1 / 14
文档名称:

高中物理常见考点及例题简解 (2).doc

格式:doc   大小:272KB   页数:14页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中物理常见考点及例题简解 (2).doc

上传人:莫比乌斯 2024/5/4 文件大小:272 KB

下载得到文件列表

高中物理常见考点及例题简解 (2).doc

相关文档

文档介绍

文档介绍:该【高中物理常见考点及例题简解 (2) 】是由【莫比乌斯】上传分享,文档一共【14】页,该文档可以免费在线阅读,需要了解更多关于【高中物理常见考点及例题简解 (2) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。优秀学****资料欢迎下载优秀学****资料欢迎下载优秀学****资料欢迎下载高中物理常见考点题型1直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,:如图所示,水平传送带以v=2m/s的速度匀速前进,上方漏斗中以每秒50kg的速度把煤粉竖直抖落到传送带上,,则传送带的电动机应增加的功率为( ) 【解析】漏斗均匀持续将煤粉抖落在传送带上,每秒钟有50kg的煤粉被加速至2m/s,故每秒钟传送带的电动机应多做的功为:ΔW=ΔEk+Q=mv2+f·Δs=mv2=200J故传送带的电动机应增加的功率ΔP==200W.[答案] B 题型2物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,:如图所示,,重力加速度为g,则( ),如果μ>tanθ,,如果μ<tanθ,,如果μ=tanθ,,如果μ=tanθ,则拉力大小应是mgsinθ【解析】对于静止置于斜面上的滑块,可沿斜面下滑的条件为mgsinθ>μmgcosθ;同理,当mgsinθ<μmgcosθ时,具有初速度下滑的滑块将做减速运动,选项A、B错误;当μ=tanθ时,滑块与斜面之间的动摩擦力f=mgsinθ,由平衡条件知,使滑块匀速上滑的拉力F=2mgsinθ,选项C正确、D错误.[答案] C 题型3?运动的合成与分解问题 题型概述:(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,:如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上面放着一个质量为m的物块C,、B、,使之从C、B之间抽出来,已知重力加速度为g,则拉力F的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)( )>μ(2m+M)g >μ(m+2M)>2μ(m+M)>2μmg【解析】无论F多大,摩擦力都不能使B向右滑动,而滑动摩擦力能使C产生的最大加速度为μg,故>μg时,即F>2μ(m+M)g时A可从B、C之间抽出.[答案] C例题:如图甲所示,质量m1=,传送带的速度大小v带=,方向如图所示;在A的右侧L==、,之后当其中某一物块相对传送带的速度为零时,,、B的影响,且A、=:甲(1)物块B刚开始滑动时的加速度.(2)碰撞后两物块的速度.(3)两物块间的最大距离.【解析】(1)物块B刚开始滑动时,加速度为:a==μg=1m/s2,方向向右. (2分)(2)设经t1时间,A、B两物块相碰,有:at+L=v带t1解得:t1=1s,t1′=5s(由上述分析可知,t1′不合题意,舍去)碰前B的速度v2=at1=1m/s (2分)由题意可知:碰后B的速度v2′=2m/s或v2″=4m/s优秀学****资料欢迎下载优秀学****资料欢迎下载优秀学****资料欢迎下载由动量守恒定律得:m1v带+m2v2=m1v1′+m2v2′m1v带+m2v2=m1v1″+m2v2″解得:碰后A的速度v1′=″=-:由于m1v+m2v<m1v1′2+m2v2″2故v1″=-、v2″=4m/s这组数据舍去所以碰后A的速度v1′=,方向向右;B的速度v2′=2m/s,方向向右. (3分)(3)因碰后两物块均做加速度运动,加速度都为a=1m/s2,所以B的速度先达到与传送带相同速度,:v带=v2′+at2,t2=1s此时A的速度v3=v1′+at2=<v带故从t2之后A继续加速运动,B和传送带开始减速运动,直到A和传送达到某个共同速度v4后,A所受的摩擦力换向,,则:v4=v3+at3=v带-a带t3,t3=sA的速度v4=v3+at3=m/s (2分)此时B的速度v5=v带-at3=m/s,之后A、B均做减速运动,因为在整个过程中B的速度始终大于A的速度,所以当A、B都静止时两物块间的距离最大. (1分)B碰后运动的总位移s2=+=7m或s2=t2+×=7m (2分)A碰后运动的总位移s1=+≈6m (2分)两物块间的最大距离sm=s2-s1=1m. (1分)[答案] (1)1m/s2,方向向左(2),方向向右;B的速度为2m/s,方向向右(3)1m 题型4抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法, 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解例题:在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示):图9-3(1)落到斜面上的时间t=;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;(3)经过tc=小球距斜面最远,最大距离d=. 题型5?圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,,,而竖直面内的圆周运动则重在考查最高点的受力情况. 思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力. (2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动. 题型6?牛顿运动定律的综合应用问题 题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,,近几年来考查频率极高. 思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,, 对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,:如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了( )图9-.(m1+m2)2g2()D.+【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:图9-12乙x1=,x2=故A、B增加的重力势能共为:ΔEp=m1g(x1+x2)+m2gx2=+.[答案] D【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功W=·x总=+. 题型7?机车的启动问题 题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f= 思维模板:(1),由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f. 这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力). (2),“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动. 过程1以“功率P达到最大,加速度开始变化”“速度最大”=F·s计算,不能用W=P·t计算(因为P为变功率). 题型8以能量为核心的综合应用问题 题型概述:,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒):两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体. 思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,,:如图甲所示,质量为2m的长木板静止地放在光滑的水平面上,另一质量为m的小铅块(可视为质点)以水平速度v0滑上木板的左端,恰能滑至木板的右端且与木板保持相对静止,(即m1=m2=m)的两段1、2后,将它们紧挨着放在同一水平面上,让小铅块以相同的初速度v0由木板1的左端开始运动,如图乙所示,则下列说法正确的是( )、【解析】长木板分两段前,铅块和木板的最终速度为:vt==v0且有Q=fL=mv02-×3m()2=mv02长木板分两段后,可定量计算出木板1、2和铅块的最终速度,从而可比较摩擦生热和相对滑动的距离;也可用图象法定性分析(如图丙所示)比较得到小铅块到达右端之前已与木板2保持相对静止,[答案] AD如图所示,一劲度系数k=800N/m的轻弹簧的两端各焊接着两个质量均为m=12kg的物体A、B,A、,使物体A开始向上做匀加速运动,,设整个过程中弹簧都处于弹性限度内,取g=10m/:(1)此过程中所加外力F的最大值和最小值.(2)此过程中外力F所做的功.【解析】(1)A原来静止时有:kx1=mg (1分)当物体A刚开始做匀加速运动时,拉力F最小,:F1+kx1-mg=ma (1分)当物体B刚要离开地面时,拉力F最大,:F2-kx2-mg=ma (1分)对物体B有:kx2=mg (1分)对物体A有:x1+x2=at2 (1分)解得:a=:F1=45N (1分),F2=285N. (1分)(2),初末状态的弹性势能相等(1分)由功能关系得:WF=mg(x1+x2)+m(at)2=. (2分)[答案] (1)285N 45N (2) 题型9力学实验中速度的测量问题 题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度. 思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/ 题型10电容器问题 题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面. 思维模板: (1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关. (2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd) (3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连).例题:如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,下极板接地。一带电油滴位于容器中的P点且恰好处于平衡状态。,则极板带电量将增大答案B【解析】电容器两端电压U不变,由公式,场强变小,电场力变小,带点油滴将沿竖直方向向下运动,A错;P到下极板距离d不变,而强场E减小,由公式U=Ed知P与正极板的电势差变小,又因为下极板电势不变,所以P点的电势变小,B对;由于电场力向上,而电场方向向下,可以推断油滴带负电,又P点的电势降低,所以油滴的电势能增大,C错;图中电容器两端电压U不变,电容C减小时由公式Q=CU,带电量减小,D错。 题型11带电粒子在电场中的运动问题 题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题?. 思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手 ①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、 ②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择). (2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力 ①质子、α粒子、电子、离子等微观粒子一般不计重力; ②液滴、尘埃、小球等宏观带电粒子一般考虑重力; ③特殊情况要视具体情况,根据题中的隐含条件判断. (3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,:在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度vm=.图9-5 题型12带电粒子在磁场中的运动问题 题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种: (1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主. 思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法. 例题:在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),、边长也为L的正方形线框以速度v进入上部磁场时,-8甲(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【解析】(1)当线框的ab边从高处刚进入上部磁场(如图9-8乙中的位置①所示)时,线框恰好做匀速运动,则有:mgsinθ=BI1L此时I1=当线框的ab边刚好越过边界ff′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab边与cd边切割磁感线所产生的感应电动势同向叠加,:图9-8乙a==3gsinθ,方向沿斜面向上.(2)而当线框的ab边到达gg′与ff′的正中间位置(如图9-8乙中的位置③所示)时,线框又恰好做匀速运动,说明mgsinθ=4BI2L故I2=I1由I1=可知,此时v′=v从位置①到位置③,线框的重力势能减少了mgLsinθ动能减少了mv2-m()2=mv2由于线框减少的机械能全部经电能转化为焦耳热,因此有:Q=mgLsinθ+mv2.[答案] (1)3gsinθ,方向沿斜面向上(2)mgLsinθ+mv2【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法. 题型13带电粒子在复合场中的运动问题 题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况.