文档介绍:数据统计分析中应用数据挖掘技术及效益分析
传统的数据统计分析方法是利用数据库系统已有的数据进行简单的统计归类分析,可以方便快捷对数据进行录入、查询、修改、更新、统计等功能。但是传统数据统计分析方法无法及时准确地发现数据中存在的关系和规则,无法快速提取企业决策者需要的精准分析数据,致使企业决策者很难根据现有的统计数据预测未来的发展趋势。很容易丢失商机,造成企业的被动,为企业发展壮大带来巨大的阻力。因此急需一种新的技术来实现企业的这些需求。本文重点分析的数据挖掘技术可以替代对海量数据无法胜任的传统数据统计分析方法,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据挖掘为探查和分析新的数据类型以及用新方法分析旧有数据类型提供了强大准确的处理能力,在海量数据处理方面得到广泛应用并取得非常好的经济及社会效益。
0 引言
新世纪以来,随着互联X及信息技术的飞速发展和应用,使我国的信息化得到前所未有的爆炸式增长,各个行业相继完成信息化改造,极大地提升了人们的生活水平与生产效率。同时,也使各行业进入到信息化发展的轨道上,进一步提升了企业生产效益。正是由于经济的飞速发展,各行业发展都已积累了海量的数据信息。但是传统的数据分析方法和工具仅仅能实现简单的录入、查询、更改、统计、输出等非常低等的功能,无法及时快速地发现数据跟数据之间存在的关系与规则,无法根据已有的海量数据有效预测未来的发展趋势,不能及时为企业决策提供有力的数据支持。
数据挖掘技术的出现技术填补了大量企业的这一需求,数据挖掘技术可以高效地挖掘数据背后隐藏的关系跟规则,非常方便地把这些海量信息予以统计、分析及利用成为当前各行业需要解决的首个问题。为企业决策提供及时准确的统计学数据支持,为企业发展壮大提供很好的数据分析工具。而海量数据挖掘技术的出现,保证了海量数据信息的合理利用,同时加快了我国信息化技术的发展。
1 数据挖掘技术定义
数据挖掘技术起源于情报分析,其过程是一个从大量的、不完整的、有噪声的、模糊的随机数据被从隐含在大量数据中提取的过程,数据挖掘的情报资料是人们事先不知道的,但可能是有用的信息和知识。在大多数情况下,人们利用计算机等信息工具的时候只知道,存储数据,数据被存储的越来越多,但不知道这些海量数据中隐藏着很多重要的规律、规则等信息,数据挖掘技术就是一种可以从大量的数据中挖掘出有用重要信息的一种数据分析工具。如图1所示。
2 数据挖掘常用的方法
数据统计分析中的数据挖掘技术主要有以下方法:分类法、回归分析法、聚类法、关联规则法、特征法、变化和偏差分析法、公司、朗讯科技、麻省理工大学、剑桥大学、Penn State大学都在大量研究与开发塑料或有机物质芯片。
微光学技术
专家利用可反射光线的水晶、玻璃等物质,让光纤传输资料的速度,不会因为通过路由器、交换器时而降低速度。
司法
在司法领域,数据挖掘技术分析的对象一般分为两大类:一类是基于监控对象的系统,它能够帮助分析专家跟踪某个犯罪嫌疑人;另一类是基于行为模式的系统,它可以在多种活动方式中搜寻可疑的可能涉及犯罪的行为,或者可能是犯罪分子才会产生的行为。基于监控对象的数据挖掘技术又称作关联分析法,是司法机构重点开发的技术。这种方法能利用相关数据,在表面上没有关系的人或事件之间建立关联