文档介绍:第一章极限论极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。一、:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。利用该定理一般分两步:1、证明极限存在。2、求极限。说明:对于这类问题,题中均给出了数列的第项和第项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。例1设证的极限存在,并求其极限。分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。解:由基本不等式,,所以可知数列有下界;下面证单调性,可知当时,有,则单调递减。综合可得,则单调递减有下界,所以存在;令,带入等式解得。评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性的过程中并没有用传统的作差或作商的方法,而是用了这一代换(原因是正是数列的极限值,这正是本题的高明之处,在以后的证明过程中可以借鉴,掌握这一套路。例2设,证明的极限存在。分析:本题给出的是数列的通项,看似很难下手,其实应该注意到的原函数就是,而且正好可以与定积分的和式挂钩,这就是本题的突破口。证:可视为高(长)度为,宽度为1的矩形的面积和。由于在上单调递减且恒大于0,则由定积分的几何意义可知,,所以有()所以,下证单调性()由式()和()可知,数列单调递减有下界,所以存在。得证。评注:本题以的原函数就是,而且可视为定积分的和式这一突破口,结合函数的单调性运用定积分的几何意义构造不等式进行有界性,单调性的证明。对于单调性的证明,也可其本质上是一样的。前面,我们讨论的数列都是单调的,但有时候数列本身不单调,而其奇、偶子列单调且其有相同的极限值,则原数列也有极限。下面以例子说明。例3设证明收敛,并求之。分析:首先可知,可知并不单调,但可以考虑奇子列和偶子列。证明:用数归法证明单调性。由,知成立。假设当时,有成立则有当时,所以,当时也成立。其奇子列单调递减。由于,而,且,所以有。则其奇子列单调递减且有下界。同理可证,偶子列单调递增且有上界,由单调有界原理可知,奇、偶子列的极限均存在,不妨设为和。则有,解得评析:在应用数学归纳法证明单调性的过程中用到了是增函数这一性质,当然,数学归纳法证明单调性也并不是唯一的方法,下面用作差法证明:所以可知与的符号相同,由于,则;同理,则。即奇子列单调递减,偶子列单调递增。这样的讨论显然比较繁琐,有没有更简单的方法呢?当然有,下面再讨论。。下面介绍该原理:定理:设和是两个常数,是一个给定的数列,只要满足下列两个条件之一:,.那么必收敛,并在第二种条件下,有证明:由,则有,由级数的比较审敛法,可知收敛,则有收敛,所以也收敛,则其部分和的极限存在,并设为。则有两边同时取极限,可知,,则当充分大时,有由极限的定义可知,