文档介绍:2009届高三数学二轮复习教案——转化与化归思想
一、常用方法梳理:
,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
2 化归与转化思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
:
(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。
(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。
(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。
(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。
(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、思想方法应用:
,且每月增加的利润相同,但由于厂方正在改造建设,元月份投入资金建设恰好与元月的利润相等,随着投入资金的逐月增加,且每月增加投入的百分率相同,到12月投入建设资金又恰好与12月的生产利润相同,问全年总利润m与全年总投入N的大小关系是( )
A. m>N B. m<N =N
[分析]每月的利润组成一个等差数列{an},且公差d>0,每月的投资额组成一个等比数列{bn},且公比q>1。,且,比较与的大小。
若直接求和,很难比较出其大小,但注意到等差数列的通项公式an=a1+(n-1)d是关于n的一次函数,其图象是一条直线上的一些点列。等比数列的通项公式bn=a1qn-1是关于n的指数函数,其图象是指数函数上的一些点列。在同一坐标系中画出图象,直观地可以看出ai≥bi 则>,即m>N。
[点评]把一个原本是求和的问题,退化到各项的逐一比较大小,而一次函数、指数函数的图象又是每个学生所熟悉的。在对问题的化归过程中进一步挖掘了问题的内涵,通过对问题的反思、再加工后,使问题直观、形象,使解答更清新。
,三棱锥P—ABC中,已知PA⊥BC,PA=BC=l,PA,BC的公垂线ED=—ABC的体积.
分析:如视P为顶点,△ABC为底面,则无论是S△,换个角度看问题,创造条件去应用三棱锥体积公式,则可走出困境.
解:如图,连结EB,EC,由PA⊥BC,PA⊥ED,ED