文档介绍:该【贵州省安顺市2022年数学八上期末质量跟踪监视模拟试题含解析 】是由【开心果】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【贵州省安顺市2022年数学八上期末质量跟踪监视模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷注意事项:,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。。,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。,确定后必须用黑色字迹的签字笔描黑。,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分),4,5,2,8,它们的数据分析正确的是( ) ,,,则、、的大小关系是()A. B. C. () ()A. B. C. ,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.() ,能组成三角形的是(),2cm,3cm ,3cm,4cm ,6cm,12cm ,3cm,+y(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式y2x+y的值( ) ,长方形中,,点E是边上的动点,现将沿直线折叠,使点C落在点F处,则点D到点F的最短距离为() ( )A.±4 C.±2 ,错误的是()①立方根是;②的平方根为;③的立方根为;④的算术平方根为,A.①② B.②③ C.③④ D.①④,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是() ,AD平分,于点E,,DE=2,则AC的长是() 、填空题(每题4分,共24分),甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离S(km)与时间t(h)的关系如图所示,,直线与坐标轴分别交于点,与直线交于点是线段上的动点,连接,若是等腰三角形,,,,,中,,,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=、解答题(共78分)19.(8分)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是;②在图2中,求证:AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=.(8分)先化简,再求值.,其中x=.(8分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)22.(10分)阅读材料:若m2﹣2mn+2n2﹣11n+22=1,求m,:∵m2﹣2mn+2n2﹣11n+22=1,∴(m2﹣2mn+n2)+(n2﹣11n+22)=1.∴(m﹣n)2+(n﹣2)2=1,∴m﹣n=1,n﹣2=1.∴n=2,m=,探究下面的问题:(1)已知:x2+2xy+2y2+4y+4=1,求xy的值;(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣16a﹣12b+111=1,求△ABC的周长的最大值;(3)已知:△ABC的三边长是a,b,c,且满足:a2+2b2+c2﹣2b(a+c)=1,试判断△.(10分)阅读下面材料,完成(1)-(3),老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,、AF、DF之间的数量关系,,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,.(10分)我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如(1),与都是等腰三角形,其中,则△ABD≌△ACE(SAS).(1)熟悉模型:如(2),已知与都是等腰三角形,AB=AC,AD=AE,且,求证:;(2)运用模型:如(3),为等边内一点,且,,根据前面的“手拉手全等模型”,以为边构造等边,这样就有两个等边三角形共顶点,然后连结,通过转化的思想求出了的度数,则的度数为度;(3)深化模型:如(4),在四边形中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,.(12分)阅读解答题:(几何概型)条件:如图1::在直线上确定一点,使的值最小;方法:作点关于直线对称点,连接交于点,则,由“两点之间,线段最短”可知,点即为所求的点.(模型应用)如图2所示:两村在一条河的同侧,两村到河边的距离分别是千米,千米,千米,现要在河边上建造一水厂,向两村送水,铺设水管的工程费用为每千米20000元,请你在上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用.(拓展延伸)如图,中,点在边上,过作交于点,为上一个动点,连接,若最小,则点应该满足()(唯一选项正确).(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式参考答案一、选择题(每题4分,共48分)1、B【分析】根据平均数、中位数、方差和极差的概念分别计算可得.【详解】解:将数据重新排列为1、2、4、5、8,则这组数据的平均数为=4,中位数为4,方差为×[(1-4)2+(2-4)2+(4-4)2+(5-4)2+(8-4)2]=6,极差为8-1=7,故选:B.【点睛】本题主要考查方差,解题的关键是掌握平均数、中位数、、D【分析】根据幂的运算法则,把各数化为同底数幂进行比较.【详解】因为,,所以故选:D【点睛】考核知识点:、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【详解】解:∵∴,,∴,即,∴:C.【点睛】本题主要考查无理数的估算,、D【解析】根据分式的定义即可求解.【详解】,故错误;,故错误;,故错误;,正确;故选D.【点睛】此题主要考查分式的识别,、B【分析】先根据已知条件证明△AEF≌△ABC,,即可解答.【详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠:②③④:B.【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,、B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形;B、2+3>4,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,:B.【点睛】、A【解析】把x与y分别换为3x与3y,化简后判断即可.【详解】根据题意得:3y6x+3y=y2x+y,则分式的值不改变,故选A.【点睛】此题考查了分式的基本性质,、B【分析】连接DB,DF,根据三角形三边关系可得DF+BF>DB,得到当F在线段DB上时,点D到点F的距离最短,根据勾股定理计算即可.【详解】解:连接DB,DF,在△FDB中,DF+BF>DB,由折叠的性质可知,FB=CB=,∴当F在线段DB上时,点D到点F的距离最短,在Rt△DCB中,,此时DF=8-4=4,故选:B.【点睛】本题考查的是翻转变换的性质,勾股定理,,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.