文档介绍:目录
1、绪论••••••••••••••••••••••••••••••••••2
2、摘要••••••••••••••••••••••••••••••••••3
3、问题的重述••••••••••••••••••••••••••••4
4、问题的分析••••••••••••••••••••••••••••5
5、模型的假设及符号说明•••••••••••••••••••••••6
6、符号的使用和说明••••••••••••••••••••••7
7、模型的建立与求解••••••••••••••••••••••8
8、模型建立••••••••••••••••••••••••••••••8
9、模型求解••••••••••••••••••••••••••••••11
10、人力资源安排方案的确定••••••••••••••••••••16
11、模型评价与总结••••••••••••••••••••••••17
12、附录•••••••••••••••••••••••••••••••••18
绪论
本篇论文,是我通过一个具体的实例来展现作为一个高级企业管理员,应如何进行人员分配才能保证公司利益最大化的问题,这是以后工作的重中之重。通过这种建模方法,使我对以后要从事的工作充满了信心。
摘要
随着现代企业的发展,企业之间的竞争力越来越大,如何尽量满足客户的要求并且符合公司的人力资源,使企业的收益最大,这就涉及人员的分配问题。
而目前现有的人员分配方案是根据经验和需求来进行分配的,这样做的优点是能够快速确定人员分配,节约时间,但缺点是没有强有力的理论依据保证该分配方案是最优分配方案,无法保证一定能使公司利益最大化。合理的人力资源配置应使人力资源的整体功能强化,使人的能力与岗位要求相对应。企业的岗位有层次与种类之分,它们占据着不同的位置,处于不同的能级水平。每个人也都具有不同水平的能力,在纵向上处于不同的能级位置。企业岗位人员的配置,应该做到能级对应,也就是说每一个人所具有的能级水平与所处的层次和岗位的能级要求相对应。
本文针对各项工程对技术人员限制的实际需求,充分合理地对专业技术人员进行合理配置,最终给出了该模型下的最优解,使公司收益最大化。
首先明确目标函数为公司最大收益,根据题目要求综合考虑了各项目客户对公司各专业技术人员人数的限制及总技术人员人数的限制,以及公司各类专业技术人员资源的限制等因素,将这些因素量化,即为本题的约束条件。再利用Matlab软件得出模型中技术力量配置的最优解,即得以解决了本题中的人力资源安排问题。
关键词:多目标规划,最优化模型,约束量化
1 问题的重述
"E公司"有专业技术人员共41人,人员结构可以分为高级工程师、工程师、助理工程师以及技术员,人员结构对应的工资水平各有不同。目前,公司承接有4个工程项目,其中2项是现场施工监理,主要工作在现场完成。另外2项是主要在办公室完成的工程设计。由于4个项目来源于不同客户,并且工作的难易程度不一,因此,各项目的合同对有关技术人员的收费标准不同。
为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求。这些要求体现在人员结构上的人数都有一定的范围限制,各项目的总人数有限制,由于高级工程师相对稀缺而且是质量保证的关键,专门对高级工程师的配备有限制,另外,各项目对于其他专业人员也根据项目的不同而有不同的限制和要求。
由于收费是按人工计算的,公司现有41人不能满足4个项目总共同时最多需要的55人,如何合理的分配现有的技术力量,使公司每天的直接收益最大成为首先要解决的问题。为使公司的直接收益最大,应如何分配现有的技术力量?
2 问题的分析
根据对问题的理解和分析,这是一个整数规划问题。
问题给出了使公司每天的直接收益最大时所要遵循的原则:1、各项目客户对专业技术人员结构的要求;2、各项目客户对公司技术人员总人数的限制;3、公司各类专业技术人员人数的限制。
首先,应对问题所给出的各类数据的限制和要求进行分析,从中挖掘出对配置现有的技术力量有帮助的信息,并根据问题中提供的数据,将上述三条原则量化,寻求技术人员的配置与公司每天直接收益间的关系,再结合问题所给出的各项目客户对专业技术人员结构的要求、各项目客户对技术人员总人数的限制以及公司各类专业技术人员人数的限制等约束条件,最终规划出使得公司每天直接收益(公司总收入减去总支出)最大时的人力资源配置。
基于以上分析,问题可转化为:根据各项目的限制要求挖掘出有用信息;找出公司的收入及各项支出(各类技术人员的工资及C、D两个项目的办公室管理费用)的差值,即公司每天的直接收益(Z)=公司的总收入(I)- 公司的总支出(O),写出公司每天收益最大的目标函数及约束