1 / 26
文档名称:

PCR扩增的原理和操作步骤.doc

格式:doc   大小:2,992KB   页数:26页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

PCR扩增的原理和操作步骤.doc

上传人:文艺人生 2024/5/10 文件大小:2.92 MB

下载得到文件列表

PCR扩增的原理和操作步骤.doc

相关文档

文档介绍

文档介绍:该【PCR扩增的原理和操作步骤 】是由【文艺人生】上传分享,文档一共【26】页,该文档可以免费在线阅读,需要了解更多关于【PCR扩增的原理和操作步骤 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。PCR扩增的原理和操作步骤0PCR扩增反应的操作第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DN***段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。PCR基本原理:是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DN***段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA膜板、四种dNTP溶液、耐热TaqDNA聚合酶、Mg2+等。反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在TaqDNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DN***段,该片段又可作为下一0浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。-引物复合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,TaqDNA聚合酶催化的合成速度大约为40~60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。0PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用Y=(1+X)n计算。Y代表DN***段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DN***段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DN***段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情况下,平台期的到来是不可避免的。PCR扩增产物可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3'端开始延伸,其5'端是固定的,3'端则没有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合时,由于新链模板的5'端序列是固定的,这就等于这次延伸的片段3'端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内2、形成长短一致的“短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计,这使得PCR的反应产物不需要再纯化,就能保证足够纯DN***段供分析与检测用。变性延伸退火2图PCR的反应历程二、PCR反应的五个元素参与PCR反应的物质主要为五种:引物、酶、dNTP、模板和Mg2+。,PCR产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。引物设计有3条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。引物的选择将决定PCR产物的大小、位置、以及扩增区域的Tm值这个和扩增物产量有关的重要物理参数。好的引物设计可以避免背景和非特异产物的产生,甚至在RNA-PCR中也能识别cDNA或基因组模板。引物设计也极大的影响扩增产量:若使用设计粗糙的引物,产物将很少甚至没有;而使用正确设计的引物得到的产物量可接近于反应指数期的产量理论值。当然,即使有了好的引物,依然需要进行反应条件的优化,比如调整Mg42+浓度,使用特殊的共溶剂如二***亚砜、甲酰***和甘油。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。(1)引物长度PCR特异性一般通过引物长度和退火温度来控制。引物的长度一般为15-30bp,常用的是18~27bp,但不应大于38bp。引物过短时会造成Tm值过低,在酶反应温度时不能与模板很好的配对;引物过长时又会造成Tm值过高,超过酶反应的最适温度,还会导致其延伸温度大于74℃,不适于TaqDNA聚合酶进行反应,而且合成长引物还会大大增加合成费用。(2)引物碱基构成引物的G+C含量以40~60%为宜,过高或过低都不利于引发反应,上下游引物的GC含量不能相差太大。其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值5~10℃。若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近724℃以使复性条件最佳。引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。(3)引物二级结构引物二级结构包括引物自身二聚体、发卡结构、引物间二聚体等。这些因素会影响引物和模板的结合从而影响引物效率。对于引物的3’末端形成的二聚体,应控制其ΔG大于-,因为此种情形的引物二聚体有进一步形成更稳定结构的可能性,引物中间或5’端的要求可适当放宽。引物自身形成的发卡结构,也以3’端或近3’端对引物-模板结合影响更大;影响发卡结构的稳定性的因素除了碱基互补配对的键能之外,与茎环结构形式亦有很大的关系。应尽量避免3’末端有发卡结构的引物。(4)引物3’端序列引物3’末端和模板的碱基完全配对对于获得好的结果是非常重要的,而引物3’末端最后5到6个核苷酸的错配应尽可能的少。如果3’末端的错配过多,通过降低反应的退火温度来补偿这种错配不会有什么效果,反应几乎注定要失败。5引物3’末端的另一个问题是防止一对引物内的同源性。应特别注意引物不能互补,尤其是在3’末端。引物间的互补将导致不想要的引物双链体的出现,这样获得的PCR产物其实是引物自身的扩增。这将会在引物双链体产物和天然模板之间产生竞争PCR状态,从而影响扩增成功。引物3’末端的稳定性由引物3’末端的碱基组成决定,一般考虑末端5个碱基的ΔG。?G值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性,此值的大小对扩增有较大的影响。应当选用3’端?G值较低(绝对值不超过9),负值大,则3’末端稳定性高,扩增效率更高。引物的3’端的?G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。需要注意的是,如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率。另外末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。(5)引物的5′端引物的5′端限定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′端修饰包括:加酶切位点;标记生物素、荧光、***、Eu7