1 / 11
文档名称:

PID参数整定过程.doc

格式:doc   大小:3,656KB   页数:11页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

PID参数整定过程.doc

上传人:文艺人生 2024/5/10 文件大小:3.57 MB

下载得到文件列表

PID参数整定过程.doc

相关文档

文档介绍

文档介绍:该【PID参数整定过程 】是由【文艺人生】上传分享,文档一共【11】页,该文档可以免费在线阅读,需要了解更多关于【PID参数整定过程 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。PID参数整定过程-2-PID参数整定过程邓文清摘要:本文通过对PID控制的理论分析,得出P、I、D各参数在控制中的作用,并使用MATLAB软件完整的仿真了一个普通PID的参数整定过程,能直观的看出各参数在自动控制中的功能,便于深入理解PID的含义和整定过程,对工作中DCS的PID参数整定有一定参考价值。关键词:、调节器、被控对象、检测变送环节四大部分组成。其原理图如下:其系统传递函数框图如下:其中为过程通道特性,其中为不包含过程纯滞后部分的传递函数;为过程扰动通道传递函数;为调节器的传递函数。则单回路系统闭环传递函数为控制回路控制质量的好坏,直接影响到生产工艺的平稳、产品的质量和数-3-象在负荷扰动下的调节过程结束后,被调量没有残差,而调节阀则可以停止在新的负荷所需要的开度上。积分调节的另一个特点是它的稳定作用比比例调节的稳定作用差。对于非自衡的被控对象,如果采用比例调节时,只要加大比例带总可以使系统稳定,如果采用积分调节则不可能得到稳定的系统。对于同一个系统的同一个被控对象,采用积分调节过程的进度总是比采用比例调节时缓慢,表现为振荡频率底。积分速度对于调节过程的影响:采用积分调节时,控制系统的开环增益与积分速度成正比,因此,增大积分速度会降低控制系统的稳定程度,直到最后的发散振荡过程。调节阀的动作越快,就越容易引起和加剧震荡。但是与此同时,振荡频率将越来越高,而动态偏差则越来越小。被调量最后没有残差是积分调节的特点。、D调节(微分调节)微分调节的特点:超前调节。在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例加微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性(液面控制时罐的横切面积比较大)或滞后(温度控制时炉温变化的缓慢)的被控对象,加入微分构成PD、PID控制器能改善系统在调节过程中的动态特性。、PI调节(比例积分调节)PI调节就是综合了比例调节和积分调节的优点,利用比例调节的快速性抵消干扰的影响,同时利用积分调节消除残差。比例积分调节器的阶越响应,它是由比例动作和积分动作两个部分组成的。用积分时间可以衡量积分部分在总输出中所占的比重,积分时间越小,积分部分所占的比重就越大。比例积分调节引入了积分动作带来消除系统残差之好处的同时,却降低了原有系统的稳定性。为保证控制系统原来的衰减率,比例积分调节器就必须将比例带适当加大。所以比例积分调节是在稍微牺牲控制系统的动态品质以换较好的稳定性能。在比例带不变的情况下,减小积分时间将使控制系统的稳定性下降、振荡加剧、调节过程加快、振荡频率升高。具有积分作用的调节器,只要被调量设定值之间有偏差,其输出就会不停地变化。如果由于某种原因,被调量偏差一时无法消除,然而调节过程还是要试图校正这个偏差,结果经过一段时间后,调节器输出将进入深度饱和状态,这种现象即是积分饱和现象。进入积分饱和的调节器要等被调量偏差反向后才慢慢从饱和状态中退出来,重新恢复控制作用。积分饱和现象经常出现在自动启动间歇过程的控制系统、串级系统中的调节器以及像选择控制这样的复杂控制系统中。PI调节器相当于积分调节器与PD调节器的串联,兼具二者的优点。利用积分部分提高系统的无差度,改善系统的稳态性能;并利用PD调节器改善动态性能,以抵消积分部分对动态的不利影响.。PI调节器主要用于在基本保证闭环系统稳定性的前提下改善系统的稳态性能-5-,绝大部分控制回路用PI调节器即可获得很好的控制效果。、PID调节(比例积分微分调节)在PI调节器中引入微分构成PID调节器,由于微分调节有一定的预见性,在系统的被控量出现较大的偏差之前,给出一个微分作用抑制较大的超调量。比例调节、积分调节都是根据当前偏差的方向和大小进行调节的,不管那时被控对象中流人量与流出量之间有多大的不平衡,而这不平衡正决定着此后被调量将如何变化的趋势。由于被调量的变化速度(包括其大小和方向)可以反映当时或稍前一些时间流入、流出量之间不平衡情况。微分调节器能根据被调量的变化进度来移动调节阀,而不是等到被调量已经出现较大的偏差后才开始调节,这种调节器在被调量有较大变化趋势的时候能取得较好的控制效果。然而这种微分调节器不能单独工作,因为实际中的调节器都有一定的失灵区,流入量与流出量之差很小是时调节器察觉不到不会动作,要等到偏差积累到一定的程度湖才开始动作,着是不允许的。因此微分调节器只能起辅助调节作用,它可以与其它调节动作结合成PD和PID控制器。比例微分调节也是有差调节。微分调节动作总是力图抑制被调量的振荡,它有提高控制系统稳定性的作用,适度引入微分动作可以允许稍许减小比例带,同时保持衰减率不变。因此,利用微分控制反映信号的变化率(即变化趋势)的“预报”作用,在偏差信号变化前给出校正信号,防止系统过大地偏离期望值和出现剧烈振荡的倾向,有效地增强系统的相对稳定性,而比例部分则保证了在偏差恒定时的控制作用。可见,比例—微分控制同时具有比例控制和微分控制的优点,可以根据偏差的实际大小与变化趋势给出恰当的控制作用。PD调节器主要用于在基本不影响系统稳态精度的前提下提高系统的相对稳定性,改善系统的动态性能。比例积分微分调节则是综合了三者的优点,通过整定PID的三个参数比例系数、积分增益、微分增益对一般的系统都能获得较好的控制效果。、小结PID各环节物理意义PID控制结构简单,且比例增益Kp(P)、积分增益Ki(I)、微分增益Kd(D)有着明显的物理意义:Kp——比例控制器直接响应与当前的误差信号,一旦发生误差信号,则控制器立即发生作用以减少偏差,当P增大则偏差下降,但是如果P无限增大则会使闭环系统不稳定。Ki=Kp/Ti——积分控制器对以往的误差发生作用,能消除控制中静态误差,但I的增加(积分时间的减少)会增加系统的超调量。如果I无限增加(积分时间无限减小)会使闭环系统不稳定。Kd=KpTd——微分控制器对误差的导数,即误差的变化率发生作用有一定的报警功能,能在误差有大的变化趋势时施加适当的控制,微分增益的增大能增加系统的响应速度,减小调节时间。但是无限增加D也会导致系统不稳定。-5-开环PID各部分的作用效果图3、、控制系统参数整定的基本要求在过程控制系统方案设计、设备选型、安装调试就绪后,下一步要进行的就是系统的投运与调整、整定。若一切顺利则系统可投入正常生产,若品质指标达不到要求,则需按照再次整定控制器参数、修改控制规律、检查设备选型是否符合要求(如调节阀特性选用是否恰当,口径是否过大或过小等)、修改控制方案的顺序反复进行,直到找出原因与解决办法便系统满足生产要求。简单的控制系统是由广义对象和调节器够成的,其控制质量的决定性因素是被控对象的动态特性,与此相比其它的都是次要的。系统安装好后,系统能否在最佳状态工作,最要取决于调节器各参数的设置是否得当。、什么是控制系统参数整定过程控制采用的控制器(调节器)通常都有一个或多个需要调整的参数,这些参数一般在计算机控制系统的组态软件中或是可编程控制器中的编程器里面,通过调整这些参数能够作用该控制回路到相对应机构(各类调节阀)。通过调整这些参数使控制器特性与被控过程特性配合好,获得满意的系统静态与动态特性的过程称为控制器参数整定。、控制系统参数整定的方法控制器参数的整定方法可分为两大类,理论计算整定法与工程整定法。理论计算整定法是在已知过程的数-7-学模型基础上,依据控制理论。通过理论计算来求取“最佳整定参数”,而工程整定法是根据工程经验,直接在过程控制系统中进行的控制器参数整定方法。从原理上讲,理论计算整定法要比工程整定法更能实现控制器参数的“最佳整定”,但是,无论是用解析法或实验测定法求取的过程数学模型都只能近似反映过程的动态特性,因而理论计算所得到的整定参数值可靠性不够高,在现场使用中还需进行反复调整。工程整定法虽未必能达到“最佳整定参数”,但由于其不需知道过程的完整数学模型,使用者不需要具备理论计算所必须的控制理论知识,因而简便、实用,易于被工程技术人员所接受并优先采用。工程整定法在实际工程中被广泛采用,并不意味着理论计算整定法就没有价值,恰恰相反,通过理论计算,有助于人们深入理解问题的实质,减少整定工作中的盲目性,较快地整定到最佳状态,尤其在较复杂的过程控制系统中,理论计算更是不可缺少的。。4、、、MATLAB简介MATLAB是一种面向科学和工程计算的高级计算机语言,现已成为国际科技界公认的最优秀的应用软件之一,在世界范围内广泛流行和使用。该软件的特点是:强大的计算功能、计算结果和编程可视化及极高的编程效率,这是其它语言无与伦比之处。MATLAB包含的几十个工具箱,涉及到自动控制、人工智能、系统识别、模式识别、动态仿真、信号分析、图象处理、数值计算和分析等等学科,广泛应用与通信、工业控制、电子等工程技术领域。、Simulink简介Simulink是MATLAB软件包之—,,也适用于线性系统和非线性系统。它采用系统模块直观地描述系统典型环节,因此可方便地建立系统模型而不需要花较多时间编程。正由于这些特点,Simulnk广泛流行,被认为是最受欢迎的仿真软件。、经典PID控制回路仿真程序框图普通PID控制仿真程序其中程序构成模块介绍:Step模块发出阶跃信号,PIDController1模块为模拟PID进行控制,模块为传递函数模块,-8-TransportDelay模块为延时部分。模块程序中模块的参数设置Stpe模块:Stpetime(阶越时间),Initialvalaue(起始值)为0,Finalvalue(终值)为100;PI控制器模块:proportional(比例系数)为1,IntegnalTimeCoeff(积分时间)为1000秒,DerivativeTimeCoeff(微分时间)为0秒;TransportDelay模块的TimeDelay(时延)=10秒。、、首先预置P=1,I=1000,D=0的情况由图可以看出,当积分与微分都不起作用只有P起作用构成一个负反馈回路时,PID响应也即控制结果与输入信号(给定值)之间存在加大的误差,且控制结果一直稳定在阶跃信号一半的地方。要想使控制结果与给定值接近我们应该适当的调大比例系数P,和引入积分也即缩短积分时间加强积分作用也即减小积分时间(减小积分系数)。、增大P减小I,在P=,I=500,D=0的情况-8-由图可以看出,增大比例作用、积分作用后PID响应有明显的靠近给定值的趋势,但是调节时间依然太长,不能满足控制需求,还需做出调整。由于调节时间太长我们应该再次增强积分作用(减小I),缩短调节时间。、保持P减小I,在P=,I=40,D=0的情况由图可以看出,再次减小积分系数后PID响应已经稳在给定目标值上,但是这里依然存在问题-10-:一是超调量太大到50%,控制系统要求合格控制的超调量是在5%之内;二是调节时间仍然过长不能满足生产的及时调节。这次的主要矛盾是超调量过大,外加调节时间稍长,我们可以减小比例系数P来减小超调量,另外在稍稍加强点积分作用(减小I)使调节速度再快点。、减小P减小I,在P=,I=29,D=0的情况由图可以看出,再次减小P、I后PID响应已经能很快稳在给定目标值上,但是这里唯一存在的问题是超调量稍大大于5%,还不满足调节控制要求。这样的情况下我们可以引入微量的微分来进行微调最终找到最佳的PID参数,使控制回路工作在最佳状态能够迅速处理各种情况。、保持P、I不变增大D,在P=,I=29,D=5的情况-10-