1 / 12
文档名称:

数字频率计测频率与测周期的基本原理.pdf

格式:pdf   大小:1,251KB   页数:12页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

数字频率计测频率与测周期的基本原理.pdf

上传人:1781111**** 2024/5/11 文件大小:1.22 MB

下载得到文件列表

数字频率计测频率与测周期的基本原理.pdf

相关文档

文档介绍

文档介绍:该【数字频率计测频率与测周期的基本原理 】是由【1781111****】上传分享,文档一共【12】页,该文档可以免费在线阅读,需要了解更多关于【数字频率计测频率与测周期的基本原理 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。[重点与难点]重点:数字频率计的组成框图和波形图。难点:时基电路和逻辑控制电路。[理论内容]一、数字频率计测频率的基本原理所谓频率,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T(1)二、数字频率计的主要技术指标1、频率准确度2、频率测量范围在输入电压符合规定要求值时,能够正常进行测量的频率区间称为频率测量范围。频率测量范围主要由放大整形电路的频率响应决定。:..频率计的数字显示位数决定了频率计的分辨率。位数越多,分辨率越高。4、测量时间频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。三、,各部分作用如下。①放大整形电路放大整形电路由晶体管3DG100与74LS00等组成。其中3DGl00组成放大器将输入频率为的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。实验五数字频率计实验目的了解数字频率计测量频率与测量周期的基本原理;。:..用中小规模集成电路设计一台简易的数字频率计,频率显示为四位,显示量程为四挡,用数码管显示。,闸门时间为1S;10HZ—,;100HZ—,闸门时间为10MS;1KHZ—9999KHZ,闸门时间为1MS;:图1数字频率计原理:..所谓频率,就是周期性信号在单位时间(1s),则其频率可表示为f=N/T原理框图中,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。时基电路提供标准时间基准信号Ⅱ,其高电平持续时间t1=1s,当1s信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s信号结束时闸门关闭,停止计数。若在闸门时间1S内计数器计得的脉冲个数为N,则被测信号频率fx=NHz。逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生脉冲Ⅴ,使计数器每次测量从零开始计数。电路设计?系统原理参考电路:..,其中3DGl00组成放大器将输入频率为的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。时基电路时基电路的作用是产生一个标准时间信号(高电平持续时间为1s),由定时98555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得)。若振荡器的频率为fo=1/(t1+t2)=,则振荡器的输出波形如图1(b)中的波形Ⅱ:..,t2=,由公式t1=(R1+R2)C和t2=,可计算出电阻R1、R2及电容C的值。若取电容C=10uF,则取标称值36kΩ,R1=(t1/)-R2=107KΩ取R1=47KΩ,RP=100KΩ逻辑控制电路根据图原理框图b所示波形,在时基信号II结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号V。脉冲信号Ⅳ和V可由两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。设锁存信号Ⅳ和清“0”信号V的脉冲宽度相同,如果要求tw=,则有tw==,若取Rext=10kΩ,则Cext=tw/=,,由74LSl23的功能表可得,当,触发脉冲从1A端输入时,在触发脉冲的负跳变作用下,输出端1Q可获得一正脉冲端,一非Q端可获得一负脉冲,其波形关系正好满足原理框图b所示波形Ⅳ和V的要求。手动复位开关S按下时,计数器清“0”。锁存器锁存器的作用是将计数器在1s结束时所计得的数进行锁存,,1s计数时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译:..,锁存器的输出等于输入,即Q=D。从而将计数器的输出值送到锁存器的输出端。正脉冲结束后,无论D为何值,,,或准备好的面包板,按照装配图或原理图进行器件装配,装配好之后进行电路的调试。调试规则为:通电准备打开电源之前,先按照系统原理图检查制作好的电路板的通断情况,并取下PCB上的集成块,然后接通电源,用万用表检查板上的各点的电源电压值,完好之后再关掉电源,插上集成块。?单元电路检测:..(输人耦合方式置DC档)观察时基电路的输出波形,应如波形图(b)所示的波形Ⅱ,其中t1=1s,t2=,否则重新调节时基电路中R1和R2的值,使其满足要求。然后改变示波器的扫描速率旋钮,观察74LSl23的第13脚和第10脚的波形,应有如波形图(b)所示的锁存脉冲Ⅳ和清零脉冲V的波形。?将4片计数器74LS90的第2脚全部接低电平,锁存器74LS273的第11脚都接时钟脉冲,在个位计数器的第14脚加入计数脉冲,检查4位锁存、译码、显示器的工作是否正常。?系统连调在放大电路输入端加入Vpp=1v,f=1khz的正弦信号,用示波器观察放大电路和整形电路的输出波形,应为与被测信号同频率的脉冲波,显示器上的读数应为1000Hz。A%BC%C6%B1%CF%D2%B5%C9%E8%BC%C6&lm=0&si=&rn=10&ie=gb2312&ct=0&cl=3&f=1&rsp=5数字频率计的设计:..要】在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。本文阐述了用VHDL语言设计了一个简单的数字频率计的过程。【关键词】周期;EDA;VHDL;数字频率计;波形仿真;一、概述1)数字频率计的基本原理频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。闸门时间也可以大于或小于一秒。闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。本文。数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频:..种应用很广泛的仪器电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路2大类。数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个应用领域VHDL(VeryHighSpeedIntegratedCircuitHardwareDescriptionLanguage,超高速集成电路硬件描述语言)诞生于1982年,是由美国国防部开发的一种快速设计电路的工具,目前已经成为IEEE(TheInstituteofElectricalandElectronicsEngineers)的一种工业标准硬件描述语言。相比传统的电路系统的设计方法,VHDL具有多层次描述系统硬件功能的能力,支持自顶向下(ToptoDown)和基于库(LibraryBased)的设计的特点,因此设计者可以不必了解硬件结构。从系统设计入手,在顶层进行系统方框图的划分和结构设计,在方框图一级用VHDL对电路的行为进行描述,并进行仿真和纠错,然后在系统一级进行验证,最后再用逻辑综合优化工具生成具体的门级逻:..器件中去,从而实现可编程的专用集成电路的设计。数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。随着复杂可编程逻辑器件的广泛应用,以EDA工具作为开发手段,运用VHDL语言。将使整个系统大大简化。提高整体的性能和可靠性。2)频率计实现频率计的结构包括一个测频率控制信号发生器、一个计数器和一个锁存器(1)测频率控制信号发生器设计频率极的关键是设计一个测频率控制信号发生器,产生测量频率的控制时序。控制时钟信号clk取为1Hz,2分频后即可查声一个脉宽为1秒的时钟test-en,一此作为计数闸门信号。当test-en为高电平时,允许计数;当test-en由高电平变为低电平(下降沿到来)时,应产生一个锁存信号,将计数值保存起来;锁存数据后,还要在下次test-en上升沿到哦来之前产生零信号clear,将计数器清零,为下次计数作准备。(2)计数器计数器以待测信号作为时钟,清零信号clear到来时,异步清零;test-en:..本文设计了一个简单的10kHz以内信号的频率机计,如果需要测试较高的频率信号,则将dout的输出位数增加,当然锁存器的位数也要增加。(3)锁存器当test-en下降沿到来时,将计数器的计数值锁存,这样可由外部的七段译码器译码并在数码管显示。设置锁存器的好处是显示的数据稳定,不会由于周期性的清零信号而不断闪烁。锁存器的位数应跟计数器完全一样。VHDL语言程序如下:结语本文介绍了使用VHDL语言设计数字频率计的方法,并下载到CPLD中组成实际电路,这样可以简化硬件的开发和制造过程,而且使硬件体积大大缩小,并提高了系统的可靠性。同时在基本电路模块基础上,不必修改硬件电路,通过修改VHDL源程序,增加一些新功能,满足不同用户的需要,实现数字系统硬件的软件化