1 / 25
文档名称:

2024年绵阳市自主招生考试数学试题含答案解析.pdf

格式:pdf   大小:2,204KB   页数:25页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2024年绵阳市自主招生考试数学试题含答案解析.pdf

上传人:小屁孩 2024/5/18 文件大小:2.15 MB

下载得到文件列表

2024年绵阳市自主招生考试数学试题含答案解析.pdf

文档介绍

文档介绍:该【2024年绵阳市自主招生考试数学试题含答案解析 】是由【小屁孩】上传分享,文档一共【25】页,该文档可以免费在线阅读,需要了解更多关于【2024年绵阳市自主招生考试数学试题含答案解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..:的解集表示在数轴上,正确的是(),这个数用科学记数法表示为()×10﹣×10﹣×10﹣×10﹣÷(1+)的结果是(),一根直尺EF压在三角形30°的角∠BAC上,与两边AC、AB交于M、N,那么∠CME+∠BNF是()°°°,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()(x﹣2)(x﹣3)=m(m>0)的两实根分别为α、β(α<β),则α、β满足()<α<β<<α<3<<2<β<<2且β>,函数y=﹣x与函数y=﹣的图象相交于A、B两点,过A、B两点分别作y轴的垂线,垂足分别为点C、D,则四边形ACBD的面积为(),一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()﹣﹣.(4﹣π)a2第1页:..:①两条直线被第三条直线所截,同旁内角互补;②有两边和其中一边的对角对应相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<(),对于平面任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b),如,f(1,3)=(﹣1,3);②g(a,b)=(b,a),如,g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b),如,h(1,3)=(﹣1,﹣3).按照以下变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3),△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,,则扇形OCED的面积等于(),在菱形ABCD中,AB=、F分别在AB、AD上,且AE=,:①△AED≌△DFB;②S=CG2;③若AF=2DF,则BG=()①②①③②③D.①②③二、:x3﹣4x2﹣12x=.(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长第2页:..,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).,在梯形ABCD中,AD∥BC,AB=DC,(2,3),B(1,1),D(4,3),则点P的坐标为(,).,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,,使其经过点A、D,:..三、:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;(2)先化简,再求值:÷(x+2﹣),其中x=﹣:每月22天,:按件计酬,多劳多得,每月另加福利工资500元,、B两种产品,,、;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2):sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且第4页:..CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG;(2)以线段DE、DG为边作出正方形DEFG,连接KF,猜想并写出四边形CEFK是怎样的特殊四边形,,点O在线段AB延长线上,以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO,求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA、OB的比例中项,当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示).,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).(1)求点C的坐标;(2)求DE所在直线的解析式;(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,:..2015年四川省绵阳自主招生考试数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤:.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,,要看把原数变成a时,小数点移动了多少位,,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:=×10﹣.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=?=..【考点】三角形内角和定理.【分析】根据三角形内角和可以求得∠AMN+∠ANM的度数,然后根据对顶角相等,从而可以求得∠CME+∠BNF的度数.【解答】解:∵∠A+∠AMN+∠ANM=180°,∠A=30°,∴∠AMN+∠ANM=180°﹣∠A=180°﹣30°=150°,∵∠AMN=∠CME,∠ANM=∠BNF,∴∠AMN+∠ANM=150°,第6页:..故选B.【点评】本题考查三角形内角和定理、对顶角的性质,解题的关键是明确三角形内角和,.【考点】等腰直角三角形;解直角三角形.【分析】先作DE⊥AB于E,再根据tan∠DBA=,求得BE=5AE,最后根据AB=AE+BE=AE+5AE=6,求得AE=,并在等腰直角三角形ADE中,由勾股定理求得AD即可.【解答】解:作DE⊥AB于E,∵tan∠DBA==,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE,∴BE=5AE,又∵AC=6,∴AB=6,∴AE+BE=AE+5AE=6,∴AE=,∴在等腰直角三角形ADE中,由勾股定理得AD=2,故选(D)【点评】本题主要考查了等腰直角三角形的性质以及直角三角形,解题的关键是作辅助线,构造直角三角形,.【考点】根与系数的关系.【分析】令m=0,根据已知条件得出函数出y=(x﹣2)(x﹣3)的图象与x轴的交点分别为(2,0),(3,0),再根据m>0,第7页:..得出原顶点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增大,从而得出答案.【解答】解:令m=0,则函数出y=(x﹣2)(x﹣3)的图象与x轴的交点分别为(2,0),(3,0),∵m>0,∴原顶点沿抛物线对称轴向下移动,两个根沿对称轴向两边逐步增大,∴α<2且β>3;.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;平行四边形的判定与性质.【分析】反比例函数y=xk图象中任取一点,向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,据此进行计算即可.【解答】解:∵过A、B两点分别作y轴的垂线,垂足分别为点C、D,∴△AOC的面积=×|﹣4|=2,又∵AO=BO,∠AOC=∠BOD,∴△AOC≌△BOD,∴CO=DO,∴四边形ADBC是平行四边形,∴四边形ACBD的面积=4×△AOC的面积=4×2=8,故选(A).【点评】本题主要考查了反比例函数中k的几何意义以及平行四边形的判定与性质,在反比例函数的图象上任意一点向一条坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,.【考点】轨迹;正方形的性质.【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,“不能接触到的部分”的面积是4×(1﹣)=4﹣::..【点评】本题主要考查了轨迹、正方形和圆的面积的计算公式,.【考点】命题与定理.【专题】压轴题.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:①两条平行直线被第三条直线所截,同旁内角互补,故错误;②有两边和其中一边的对角对应相等的两个三角形不一定全等,故错误;③菱形既是轴对称图形又是中心对称图形,正确;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1≤d≤7,,故选A.【点评】此题综合考查平行线的性质,全等三角形的判定,.【考点】点的坐标.【分析】根据f(a,b)=(﹣a,b),h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(h(5,﹣3))=f(﹣5,3)=((5,3),故选:C.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b),h(a,b)=(﹣a,﹣b).【考点】扇形面积的计算;切线的性质.【专题】计算题.【分析】根据切线的性质得到直角△AOE,由∠A=30°,得到∠AOE=60°,然后在直角△COF中,求出圆的半径,再用扇形面积公式计算出扇形的面积.【解答】解:如图:∵AB与⊙O相切,∴OE⊥AB.∵OA=OB,∠A=30°,第9页:..∴∠AOE=∠BOE=60°,∴,在直角△COF中,CF=CD=,∴CO=2,∴S==.【点评】本题考查的是扇形面积的计算,根据切线的性质得到直角三角形,解直角三角形得到圆的半径,.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;平行线分线段成比例.【专题】压轴题.【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥⊥△CBM≌△CDN,所以S=S,③过点F作FP∥:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.第10页:..∴∠BGC=∠DGC=60°.过点C作CM⊥⊥GD于N.∴,∵,∴△CBM≌△CDN,(HL)∴S==2S,四边形CMGN△CMG∵∠CGM=60°,∴GM=CG,CM=CG,∴S=2S=2××CG×CG=△CMG③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=.【点评】此题综合考查了全等三角形的判定和性质、平行线分线段成比例、不规则图形的面积计算第11页:..方法等知识点,综合性较强,、填空题:本大题共6小题,每小题3分,:x3﹣4x2﹣12x=x(x+2)(x﹣6).【考点】因式分解﹣十字相乘法等;因式分解﹣提公因式法.【分析】首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.【解答】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).【点评】此题考查了提公因式法、,注意因式分解的步骤:先提公因式,再利用其它方法分解,(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.【考点】概率公式.【分析】由风华中学七年级(2)班的“精英小组”有男生4人,女生3人,直接利用概率公式求解即可求得答案.【解答】解:∵风华中学七年级(2)班的“精英小组”有男生4人,女生3人,∴选出一人担任班长,则组长是男生的为:=.故答案为:.【点评】=,对角线AC、BD相交于点O,过点O作OE⊥BC,垂足为E,连接DE交AC于点P,过P作PF⊥BC,垂足为F,:..【考点】相似三角形的判定与性质;矩形的性质.【专题】综合题;压轴题.【分析】根据题意易证△OBE∽△DBC和△EPF∽△EDC,利用相似三角形的相似比求解.【解答】解:∵OB=OD=BD,OE⊥BC,CD⊥BC,∴△OBE∽△DBC,∴OE:CD=1:2,∵OE∥CD,∴△OEP∽△CDP,∴,∵PF∥DC,∴△EPF∽△EDC,∴,∵CE=BC,∴=.故答案为.【点评】,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).【考点】相似三角形的性质;等边三角形的性质.【专题】计算题.【分析】根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,再根据求出其边长,:..【解答】解:∵△ABC∽△ADE,AB=2AD,∴=,∵AB=2AD,S=,△ABC∴S=,△ADE如图,在△EAF中,过点F作FH⊥AE交AE于H,∵∠EAF=∠BAD=45°,∠AEF=60°,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=∵S=,△ADE作CM⊥AB交AB于M,∵△ABC是面积为的等边三角形,∴×AB×CM=,∠BCM=30°,设AB=2k,BM=k,CM=k,∴k=1,AB=2,∴AE=AB=1,∴x+x=1,解得x==.∴S=×1×=.△AEF故答案为:.第14页:..【点评】此题主要考查相似三角形的判定与性质和等边三角形的性质等知识点,解得此题的关键是根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,,在梯形ABCD中,AD∥BC,AB=DC,(2,3),B(1,1),D(4,3),则点P的坐标为(3,).【考点】等腰梯形的性质;两条直线相交或平行问题.【分析】过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,根据点的坐标求出各个线段的长,根据△APD∽△CPB和△CPF∽△CAN得出比例式,即可求出答案.【解答】解:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,∵AD∥BC,A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C的坐标是(5,1),BC=5﹣1==4﹣1=3,∵AD∥BC,∴△APD∽△CPB,∴===,∴=∵AM⊥x轴,PE⊥x轴,∴AM∥PE,∴△CPF∽△CAN,第15页:..∴===,∵AN==3,∴PF=,PE=+1=,CF=2,BF=2,∴P的坐标是(3,),故答案为:3,.【点评】本题考查了坐标与图形性质,梯形的性质,相似三角形的性质和判定的应用,,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.【考点】二次函数图象与几何变换.【专题】压轴题.【分析】先求出点A的坐标,再根据中位线定理可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.【解答】解:∵令x=0,则y=,∴点A(0,),根据题意,点A、B关于对称轴对称,∴顶点C的纵坐标为×=,第16页:..即=,解得b=3,b=﹣3,12由图可知,﹣>0,∴b<0,∴b=﹣3,∴对称轴为直线x=﹣=,∴点D的坐标为(,0),设平移后的抛物线的解析式为y=x2+mx+n,则,解得,所以,y=x2﹣x+.故答案为:y=x2﹣x+.【点评】本题考查了二次函数图象与几何变换,根据二次函数图象的对称性确定出顶点C的纵坐标是解题的关键,、解答题:本大题共6个小题,.(1)计算:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;(2)先化简,再求值:÷(x+2﹣),其中x=﹣3.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂、锐角三角函数、零指数幂和绝对值可以解答本题;(2)先化简式子,再将x的值代入即可解答本题.【解答】解:(1)()﹣2﹣6sin30°+(﹣2)0+|2﹣|第17页:..=4﹣6×+1+|2﹣|=4﹣3+1+﹣2=2;(2)÷(x+2﹣)====,当x=﹣3时,原式=.【点评】本题考查分式的化简求值,:每月22天,:按件计酬,多劳多得,每月另加福利工资500元,、B两种产品,,、;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要15分钟,生产1件B产品需要20分钟.(2)求小李每月的工资收入范围.【考点】二元一次方程组的应用.【专题】应用题.【分析】(1)生产1件A产品需要的时间+生产1件B产品需要的时间=35分钟,生产3件A产品需要的时间+生产2件B产品需要的时间=85分钟,可根据这两个等量关系来列方程组求解;(2)可根据(1)中计算的生产1件A,B产品需要的时间,根据“每生产一件A种产品,,每生产一件B种产品,”来计算出生产A,B产品每分钟的获利情况,然后根据他的工作时间,求出这两个获利额,那么他的工资范围就应该在这两个获利额之间.【解答】解:(1)设小李每生产一件A种产品、每生产一件B种产品分别需要x分钟和y分钟,根据题意,得第18页:..,:小李每生产一件A种产品、每生产一件B种产品分别需要15分钟和20分钟;(2)w=500++(22×8×60﹣15x)÷20,整理得w=﹣+,则w随x的增大而减小,由(1)÷15=,÷20=,若小李全部生产A种产品,×22×8×60+500=1556元,若小李全部生产B种产品,×22×8×60+500=.【点评】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,:..【考点】解直角三角形的应用﹣仰角俯角问题.【专题】压轴题;阅读型.【分析】先由俯角β的正切值及BC求得AB,再由俯角α的正切值及BC求得A、.【解答】解:由于α=60°,β=75°,BC=42,则AB=BC?tanβ=42tan75°=42?=42?=42(),A、D垂直距离为BC?tanα=42,∴CD=AB﹣42=84(米).答:建筑物CD的高为84米.【点评】本题考查俯角的定义,,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG;(2)以线段DE、DG为边作出正方形DEFG,连接KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)①根据正方形性质求出AD=DC,∠GAD=∠DCE=90°,根据全等三角形判定推出即可;②根据全等得出∠GDA=∠CDE,求出∠GDE=∠GDA+∠ADE=∠ADC=90°即可;(2)四边形CEFK是平行四边形,推出EF=CK,EF∥CK,根据平行四边形的判定推出即可.【解答】(1)①证明:∵四边形ABCD是正方形,∴AD=DC,∠GAD=∠DCE=90°,在△GAD和△ECD中第20页:..∴△GAD≌△ECD(SAS),∴DE=DG;②∵四边形ABCD是正方形,∴∠ADC=90°,∵△GAD≌△ECD,∴∠GDA=∠CDE,∴∠GDE=∠GDA+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴DE⊥DG;(2)四边形CEFK是平行四边形,理由如下:证明:∵四边形ABCD是正方形,∴∠B=∠ECD=90°,BC=CD,在△KBC和△ECD中,∴△KBC≌△ECD(SAS),∴DE=CK,∠DEC=∠BKC,∵∠B=90°,∴∠KCB+∠BKC=90°,∴∠KCB+∠DEC=90°,∴∠EOC=180°﹣90°=90°,∵四边形DGFE是正方形,∴DE=EF=CK,∠FED=90°=∠EOC,∴CK∥EF,∴四边形CEFK是平行四边形.【点评】此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,,点O在线段AB延长线上,以点O为圆心,OP为半径作圆,点C是圆O第21页:..上的一点.(1)如图,如果AP=2PB,PB=BO,求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA、OB的比例中项,当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示).【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据夹角相等,对应边成比例可证;(2)OP是OA,OB的比例中项,OC=OP,△CAO∽△BCO可得.【解答】(1)证明:∵AP=2PB=PB+BO=PO,∴AO=2PO.∴==2,∵PO=CO,∴.∵∠COA=∠BOC,∴△CAO∽△BCO;(2)解:设OP=x,则OB=x﹣1,OA=x+m,∵OP是OA,OB的比例中项,∴x2=(x﹣1)(x+m),∴x=.即OP=,∴OB=,∵OP是OA,OB的比例中项,即=,∵OP=OC,第22页:..∴.设⊙O与线段AB的延长线相交于点Q,当点C与点P,点Q不重合时,∵∠AOC=∠COB,∴△CAO∽△BCO,∴=,∴===,可得=m,∴当点C在圆O上运动时,AC:BC=m.【点评】本题考查了相似三角形的判定和性质,比例的性质,,在平面直角坐标系中,矩形OABC的顶点O为原点,E为AB上一点,把△CBE沿CE折叠,使点B恰好落在OA边上的点D处,点A,D的坐标分别为(5,0)和(3,0).(1)求点C的坐标;(2)求DE所在直线的解析式;(3)设过点C的抛物线y=2x2+bx+c(b<0)与直线BC的另一个交点为M,问在该抛物线上是否存在点G,使得△CMG为等边三角形?若存在,求出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)根据折叠的性质可得出BC=CD=AO=5,可在直角三角形OCD中,根据CD和OD的长用勾股定理求出OC的值

最近更新

生物多样性与气候变化保护-洞察阐释 45页

医患语言障碍的成因及优化路径-洞察阐释 42页

纳米载体系统在核医学的应用 3页

粘土矿物鉴定简易方法 3页

符号学在建筑环境艺术设计中的应用 3页

移动电子商务统一服务系统研究与设计 3页

10kV配电架空线路带电更换柱式绝缘子工具的研.. 2页

硫化宝蓝革新工艺——八道工序改为五道,产量提.. 3页

石煤的分析 3页

直线度误差曲线形成机理与形位特性研究 3页

电焊引发大火的分析与预防 3页

电弧喷涂铁基减摩涂层磨损性能的分析 3页

保障性住房居间合同 7页

保健用品陆运合同范本 7页

佛教用品店装修工程范本 7页

用δ函数研究电磁场的粒子性 3页

玉米高产栽培技术及相应推广建议 3页

燃油锻造加热炉改造 3页

煤炭企业目标成本管理与控制方法研究 3页

热轧Q345B钢带低成本生产模式探讨 3页

炼化企业双盲应急演练模式的应用与思考 3页

滑模变结构制导律的抖振问题研究 3页

湖北省沿江港口城市综合发展水平研究 3页

清单计价模式下装配式建筑造价管理的探讨 3页

液压挖掘机铲斗连杆机构优化设计 3页

海外工程项目劳务风险防范问题与对策 3页

平凡的世界读书分享 16页

常见病的关联用药(秋冬季篇) 28页

2025年开展门面房租赁税收清理工作方案 5页

2025届山东省春季高考(春考)第一次校际联考英.. 15页