文档介绍:考点跟踪训练2 整式及其运算
一、选择题
1.(2011·嘉兴)下列计算正确的是( )
·x=x3 +x=x2
C.(x2)3=x5 ÷x3=x2
答案 A
解析 x2·x=x2+1=x3,正确理解“同底数幂相乘”法则.
2.(2011·宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )
cm cm
(m+n) cm (m-n) cm
答案 B
解析设小长方形卡片的长为a、宽为b,则有a+2b=m,m-a-2b=(矩形)的一边为a,另一边为(n-2b).较小的阴影部分(矩形)的一边为(m-a),另一边为(n-a),其周长和为2×[a+(n-2b)+(n-a)+(m-a)]=2×(2n+m-a-2b)=4n.
3.(2011·广州)若a<c<0<b,则abc与0的大小关系是( )
<0 =0
>0
答案 C
解析因为a、b、c中有两个负数,所以abc>0.
4.(2011·邵阳)如果□×3ab=3a2b,则□内应填的代数式是( )
答案 C
解析□=3a2b÷3ab=a.
5.(2011·湖北)将代数式x2+4x-1化成(x+p)2+q的形式为( )
A.(x-2)2+3 B.(x+2)2-4
C.(x+2)2-5 D.(x+2)2+4
答案 C
解析 x2+4x-1=x2+4x+4-5=(x+2)2-5.
二、填空题
6.(2011·金华)“x与y的差”用代数式可以表示为________.
答案 x-y
解析减法运算的结果叫做“差”,按读法的顺序书写即可.
7.(2011·东莞)按下面程序计算:输入x=3,则输出的答案是________.
答案 26
解析根据题意,输出x3-x+=3时,原式=33-3+2=26.
8.(2011·杭州)当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为______.
答案-6
解析化简原式,得(x+1)(x+8),当x=-7时,原式=(-7+1)×(-7+8)=-6×1=-6.
9.(2011·荆州)已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了B÷A,结果得x2+x,则B+A=________.
答案 2x3+x2+2x
解析因为A=2x,B÷A=x2+x,所以B=·2x=2x3+x2,故B+A=(2x3+x2)+2x=2x3+x2+2x.
10.(2011·乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)
答案 n(n+1)+4或n2+n+4
解析第1个图形有2+4=(1×2+4)个小圆,第2个图形6+4=(2×3+4)个小圆,第3个图形有12+4=(3×4+4)个小圆,……第n个图形有[n(n+1)+4]个小圆.
三、解答题
11.(2011·金华)已知2x-1=3,求代数式(x-3)