文档介绍:该【2025年北师大版七年级数学上册期末复习压轴题专题(带解析) 】是由【小屁孩】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【2025年北师大版七年级数学上册期末复习压轴题专题(带解析) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..百学须先立志。——朱熹~,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣.﹣,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠(),它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是()°°°°,线段AB=8,C是AB的中点,点D在直线CB上,DB=,,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A,第二次将点A,向右移动4个单位长度到达点A,第三次将点A1122向左移动6个单位长度到达点A,按照这种移动规律移动下去,第n次移动到点A,如果3n点A与原点的距离等于19,,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了____________.~~:..丹青不知老将至,贫贱于我如浮云。——杜甫~“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形ABCD,第2次平移将长方形ABCD沿AB的方向向右平移5个1111111111单位,得到长方形ABCD…,第n次平移将长方形ABCD沿AB的方2222n﹣1n﹣1n﹣1n﹣1n﹣1n﹣1向平移5个单位,得到长方形ABCD(n>2),若AB的长度为56,则n=.nnnnn三、,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.~~:..百川东到海,何时复西归?少壮不努力,老大徒伤悲。——汉乐府~,B,C三点,分别表示数﹣24,﹣10,、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,,与慢车相遇了两次,这两次相遇时间间隔是多少?4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠∠EOF的度数;(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)~~:..博观而约取,厚积而薄发。——苏轼~,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.~~:..好学近乎知,力行近乎仁,知耻近乎勇。——《中庸》~,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm(用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,,゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则∠BPN=__________,∠CPD=________(用含有t的代数式表示,并化简);以下两个结论:①为定值;②∠BPN+∠CPD为定值,正确的是___________(填写你认为正确结论的对应序号).~~:..吾日三省乎吾身。为人谋而不忠乎?与朋友交而不信乎?传不习乎?——《论语》~,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(x﹣10%)(x+15%)万元D.(1﹣10%)(1+15%)x万元【考点】列代数式.【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%).【点评】本题考查了列代数式,、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为()A.﹣.﹣2b【考点】整式的加减;数轴;绝对值.【专题】计算题;整式.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.【解答】解:根据数轴上点的位置得:a<﹣1<0<b<1,∴a﹣b<0,a+b<0,则原式=b﹣a﹣a﹣b=﹣.【点评】此题考查了整式的加减,,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠()【考点】余角和补角.【分析】根据已知推出∠CAB=∠CAE=∠ADC=∠ADB=90°,再根据三角形内角和定理和三角形外角性质,互余、互补的定义逐个分析,即可得出答案.【解答】解:∵CA⊥AB,∴∠CAB=90°,∴∠1+∠B=90°,即∠1是∠B的余角,∴①正确;图中互余的角有∠1和∠B,∠1和∠DAC,∠DAC和∠BAD,共3对,∴②正确;∵CA⊥AB,AD⊥BC,∴∠CAB=∠ADC=90°,∵∠B+∠1=90°,∠1+∠DAC=90°,~~:..太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。——《左传》~∴∠B=∠DAC,∵∠CAE=∠CAB=90°,∴∠B+∠CAB=∠DAC+∠CAE,∴∠ACF=∠DAE,∴∠1的补角有∠ACF和∠DAE两个,∴③错误;∵∠CAB=∠CAE=∠ADC=∠ADB=90°,∴与∠ADB互补的角共有3个,∴④正确;故选C.【点评】本题考查了互余、互补,三角形内角和定理,三角形的外角性质的应用,主要考查学生的推理能力和辨析能力,题目比较好,,它们有公共顶点O,且有一部分重叠,已知∠BOD=40°,则∠AOC的度数是()°°°°【考点】角的计算.【分析】根据同角的余角相等即可求解.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD=∠BOC+∠BOD=90°,∴∠AOD=∠BOC=90°﹣∠BOD=50°,∴∠AOC=∠AOD+∠BOD+∠BOC=140°,故选C.【点评】此题主要考查了角的计算,余角的性质,,线段AB=8,C是AB的中点,点D在直线CB上,DB=,.【考点】两点间的距离.【分析】根据题意求出线段CB的长,分点D在线段CB的延长线上和点D在线段CB上两种情况、结合图形计算即可.【解答】解:∵线段AB=8,C是AB的中点,∴CB=AB=4,如图1,当点D在线段CB的延长线上时,CD=CB+BD=,如图2,当点D在线段CB上时,CD=CB﹣BD=:.~~:..非淡泊无以明志,非宁静无以致远。——诸葛亮~【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义、,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A,第二次将点A,向右移动4个单位长度到达点A,第三次将点A1122向左移动6个单位长度到达点A,按照这种移动规律移动下去,第n次移动到点A,如果3n点A与原点的距离等于19,【考点】数轴.【专题】推理填空题.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A与原点的距离等于19分两种情况,从而可以解n答本题.【解答】解:由题意可得,第奇数次移动的点表示的数是:1+(﹣2)×,第偶数次移动的点表示的数是:1+2×,∵点A与原点的距离等于19,n∴当点n为奇数时,则﹣19=1+(﹣2)×,解得,n=19;当点n为偶数,则19=1+2×解得n=:18或19.【点评】本题考查数轴,解题的关键是明确题意,,甲乙两人沿着边长为60cm的正方形,按A→B→C→D→A…的方向行走,甲从A点以60m/min的速度,乙从B点以69m/min的速度行走,两人同时出发,当乙第一次追上甲时,用了20min.~~:..博观而约取,厚积而薄发。——苏轼~【考点】一元一次方程的应用.【专题】几何动点问题.【分析】设乙第一次追上甲用了x分钟,则有乙行走的路程等于甲行走的路程加上90×3,根据其相等关系列方程得69x=60x+60×3,解方程即可得出答案.【解答】解:设乙第一次追上甲用了x分钟,由题意得:69x=60x+60×3,解得:x=::20【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=16.【考点】规律型:图形的变化类.【分析】由图可知:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+“龟图”中有245个“○”是n的值.【解答】解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n=16,n=﹣15(舍去).12故答案为:16.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形ABCD,第2次平移将长方形ABCD沿AB的方向向右平移5个1111111111单位,得到长方形ABCD…,第n次平移将长方形ABCD沿AB的方2222n﹣1n﹣1n﹣1n﹣1n﹣1n﹣1向平移5个单位,得到长方形ABCD(n>2),若AB的长度为56,则n=~~:..人人好公,则天下太平;人人营私,则天下大乱。——刘鹗平移的性质.【专题】规律型.【分析】根据平移的性质得出AA=5,AA=5,AB=AB﹣AA=6﹣5=1,进而求出AB1122111121和AB的长,然后根据所求得出数字变化规律,进而得出AB=(n+1)×5+【解答】解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形ABCD,1111第2次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形ABCD,1111112222∴AA=5,AA=5,AB=AB﹣AA=6﹣5=1,112211112∴AB=AA+AA+AB=5+5+1=11,111221∴AB的长为:5+5+6=16;2∵AB=2×5+1=11,AB=3×5+1=16,12∴AB=(n+1)×5+1=56,n解得:n=:10.【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA=5,1AA=、,M是定长线段AB上一定点,点C在线段AM上,点D在线段BM上,点C、点D分别从点M、点B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示.(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值;(2)若点C、D运动时,总有MD=2AC,直接填空:AM=AB;(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题.【分析】(1)计算出CM及BD的长,进而可得出答案;~~:..非淡泊无以明志,非宁静无以致远。——诸葛亮)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM=AB;(3)分两种情况讨论,当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.【解答】解:(1)当点C、D运动了2s时,CM=2cm,BD=4cm,∵AB=10cm,CM=2cm,BD=4cm,∴AC+MD=AB﹣CM﹣BD=10﹣2﹣4=4cm;(2)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=;(3)当点N在线段AB上时,如图.∵AN﹣BN=MN,又∵AN﹣AM=MN,∴BN=AM=AB,∴MN=AB,即=;当点N在线段AB的延长线上时,如图.∵AN﹣BN=MN,又∵AN﹣BN=AB,∴MN=AB,即=,=或1.【点评】本题考查了一元一次方程的应用,灵活运用线段的和、差、倍、,B,C三点,分别表示数﹣24,﹣10,、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)可设x秒后甲与乙相遇,根据甲与乙的路程差为34,可列出方程求解即可;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,分甲应为于AB或BC之间两种情况讨论即可求解.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=,4×=,﹣24+=﹣、乙在数轴上的﹣;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;~~:..非淡泊无以明志,非宁静无以致远。——诸葛亮4y+(4y﹣14)+(34﹣4y)=40,解得y=5.①甲从A向右运动2秒时返回,、乙表示在数轴上为同一点,:﹣24+4×2﹣4y;乙表示的数为:10﹣6×2﹣6y,依据题意得:﹣24+4×2﹣4y=10﹣6×2﹣6y,解得:y=7,相遇点表示的数为:﹣24+4×2﹣4y=﹣44(或:10﹣6×2﹣6y=﹣44),②甲从A向右运动5秒时返回,:﹣24+4×5﹣4y;乙表示的数为:10﹣6×5﹣6y,依据题意得:﹣24+4×5﹣4y=10﹣6×5﹣6y,解得:y=﹣8(不合题意舍去),即甲从A向右运动2秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣44.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,、乙两地相距720km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,,慢车的速度是80km/h,快车到达乙地后,停留了20min,由于有新的任务,,与慢车相遇了两次,这两次相遇时间间隔是多少?【考点】一元一次方程的应用.【分析】在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,第一次是从甲地驶往乙地时,快车追上慢车,根据追上时快车行驶的路程=慢车行驶的路程列方程求解;第二次是快车到达乙地后返回甲地时与慢车相遇,根据相遇时快车行驶的路程+慢车行驶的路程=甲、乙两地之间的路程×2列方程求解.【解答】解:设从甲地驶往乙地时,快车行驶x小时追上慢车,由题意得120x=80(x+1),解得x=2,,慢车行驶了y小时,则快车行驶了(y﹣1﹣)小时,由题意得120(y﹣1﹣)+80y=720×2,解得y=8,8﹣3=5(小时).答:在快车从甲地出发到回到甲地的整个程中,与慢车相遇了两次,这两次相遇时间间隔是5小时.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠∠EOF的度数;(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠∠EOF的度数;~~:..长风破浪会有时,直挂云帆济沧海。——李白)若∠AOC=∠BOD=,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠+β≤180°,α>β,则∠EOC=.(用含α与β的代数式表示)【考点】角的计算;角平分线的定义.【分析】(1)根据垂直的定义得到∠AOC=∠BOC=90°,根据角平分线的定义即可得到结论;(2)根据角平分线的定义得到∠EOD=∠AOD=×(80+β)=40+β,∠COF=∠BOC=×(80+β)=40+β,根据角的和差即可得到结论;(3)如图2由已知条件得到∠AOD=α+β,根据角平分线的定义得到∠DOE=(α+β),即可得到结论.【解答】解:(1)∵CO⊥AB,∴∠AOC=∠BOC=90°,∵OE平分∠AOC,∴∠EOC=∠AOC=×90°=45°,∵OF平分∠BOC,∴∠COF=∠BOC=×90°=45°,∠EOF=∠EOC+∠COF=45°+45°=90°;(2)∵OE平分∠AOD,∴∠EOD=∠AOD=×(80+β)=40+β,∵OF平分∠BOC,∴∠COF=∠BOC=×(80+β)=40+β,∠COE=∠EOD﹣∠COD=40+β﹣β=40﹣β;∠EOF=∠COE+∠COF=40﹣β+40+β=80°;(3)如图2,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,~~:..去留无意,闲看庭前花开花落;宠辱不惊,漫随天外云卷云舒。——《幽窗小记》(+β),∴∠COE=∠DOE﹣∠COD==,如图3,∵∠AOC=∠BOD=α,∠COD=β,∴∠AOD=α+β,∵OE平分∠AOD,∴∠DOE=(α﹣β),∴∠COE=∠DOE+∠COD=.综上所述:,故答案为:.【点评】本题考查了角平分线的定义,角的计算,,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.(1)在图1中,射线OC在∠AOB的内部.①若锐角∠BOC=30°,则∠MON=45°;②若锐角∠BOC=n°,则∠MON=45°.(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.【考点】角的计算;角平分线的定义.【分析】(1)①由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;②由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可;~~:..饭疏食,饮水,曲肱而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。——《论语》)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相减即可;(3)由角平分线的定义,计算出∠MOA和∠NOA的度数,然后将两个角相加即可.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=60°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°,②∵∠AOB=90°,∠BOC=n°,∴∠AOC=(90﹣n)°,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC=(90﹣n)°,BOC=n°,∴∠MON=∠COM+∠CON=∠AOB=45°,故答案为:45°;(2)∵∠AOB=90°,设∠BOC=α,∴∠AOC=90°+α,∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM﹣∠CON=∠AOB=45°,(3)∵OM,ON分别平分∠AOC,∠BOC,∴∠COM=AOC,BOC,∴∠MON=∠COM+∠CON=(∠AOC+∠BOC)=(360°﹣90°)=135°.【点评】本题考查了角平分线定义,角的有关计算的应用,和∠,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,射线OC⊥OD;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.~~:..士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?——《论语》~【考点】角的计算;角平分线的定义.【专题】探究型.【分析】(1)根据题意可得,射线OC与OD重合时,20t=5t+120,可得t的值;(2)根据题意可得,射线OC⊥OD时,20t+90=120+5t或20t﹣90=120+5t,可得t的值;(3)分三种情况,一种是以OB为角平分线,一种是以OC为角平分线,一种是以OD为角平分线,然后分别进行讨论即可解答本题.【解答】解:(1)由题意可得,20t=5t+120解得t=8,即t=8min时,射线OC与OD重合;(2)由题意得,20t+90=120+5t或20t﹣90=120+5t,解得,t=2或t=14即当t=2min或t=14min时,射线OC⊥OD;(3)存在,由题意得,120﹣20t=5t或20t﹣120=5t+120﹣20t或20t﹣120﹣5t=5t,解得t==或t=12,即当以OB为角平分线时,;当以OC为角平分线时,t的值为min,当以OD为角平分线时,t的值为12min.【点评】本题考查角的计算、角平分线的性质,解题的关键是明确题意,,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm(用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,,゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.~~:..士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?——《论语》~(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠C