1 / 20
文档名称:

2025年初三数学期中考备战(精选7篇).docx

格式:docx   大小:23KB   页数:20页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2025年初三数学期中考备战(精选7篇).docx

上传人:baba 2025/1/17 文件大小:23 KB

下载得到文件列表

2025年初三数学期中考备战(精选7篇).docx

相关文档

文档介绍

文档介绍:该【2025年初三数学期中考备战(精选7篇) 】是由【baba】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2025年初三数学期中考备战(精选7篇) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2025年初三数学期中考备战(精选7篇)篇1:初三数学期中考备战初三数学期中考备战期中考是进入初三后的第一次重大考试,而数学又是考试中十分重要的学科,也往往是学生们容易造成偏科的学科,“学习数学不仅要保持好的心态,还要做到细心耐心。”京翰教育资深数学教师陈老师告诫学生。今天陈老师就为备战期中考的初三学生提供备考方案,助大家一臂之力。调整考试心态备战初三期中考,调整好心态最重要。首先同学们要从上次月考成功的`喜悦与失败的阴影中走出来。初三是备战中考的重要阶段,期中考考的不仅仅是知识,还是考验心态的重要过程。同学们不能被一时的成功冲昏头脑,更不能因一时的失败而丧失信心。要知道,中考之前的所有考试都是练兵。紧跟老师进度现在每个学校的进度都非常快,知识点又非常难,很多同学都跟不上老师的进度,要知道老师上课讲的知识是最精华的,是他们多年教学实践的经验所得,在课本上根本找不到。京翰教育资深数学老师陈老师告诉学生:“上课一定注意听讲,把不会的知识点在课上记下来,课下一定要主动问老师,紧跟老师进度,并及时查漏补缺。”不能在同一地方摔倒两次初中数学的知识点难度不是很大,题型也不是很多,只要保证老师讲过的题型都能做对,就可以取得非常不错的成绩。因此,整理错题就非常重要。自己设一个错题本,小到作业,大到月考、期中、期末,将自己做错的所有题目全部及时的收集整理,详细分析,找出造成错误的症结所在,及时查漏补缺,决不能在同一个地方摔倒两次。期中考试已迫在眉睫,同学们要做好复习计划,及时查漏补缺,为自己的初三复习开个好彩头。篇2:中考生:如何备战初三数学期中考试中考生:如何备战初三数学期中考试转眼间大家都已升入初三,而且升入初三的第一次月考刚刚结束,相信大家还沉浸在考试成功的喜悦与考试失利的悲伤中,不管你考的好与坏,我觉得那都不重要了,重要的是你要通过这次月考发现自己在哪些方面还存在问题,还有不到一个月的时间初三第一次大考――期中考试就要到了,一定要改掉上次的不足,争取期中考试的好成绩。期中考试是我们进入初三后第一次重大考试,它的成败会直接影响到大家的学习情绪,考好了,信心大增。考的不满意,肯定会情绪比较低落,信心受到影响。有的学校在签约上还会参考这次期中考试成绩,所以它的重要性,我就不再多说了,希望大家积极备战。我现在对如何备战初三数学期中考试谈一下我的看法,希望能对同学们有所帮助。首先同学们要赶快走出上次月考成功的喜悦与失败的阴影,初三考的不仅仅是你的学习,而且需要过硬的心态,不能被一时的成功冲昏头脑,更不能因一时的失败而丧失信心。其次上课一定注意听讲,因为现在每个学校的进度都非常快,而知识点又非常难,相信很多同学都跟不上老师的进度,那上课一定注意听讲,把不会的知识点在课上记下来,课下一定要主动问老师。一定要注意老师上课讲的题是最精华,一定要弄懂。现在是初学不在乎你做多少题,关键在于你会多少题。一定要准备错题本,反复看,只要你能保证再出现以前错过的题不再出错,那我相信你的成绩会非常理想的。初中的题目有一点非常好,题型有很多相同性,等到你以后做题做多了,你会慢慢发现。所以我还可以教大家一招,当你看到非常容易出现的题型的时候,如果你实在不能理解,那我希望你暂时能背下来,第一可以保证此次期中考试的成绩,同时你会随着时间的推移慢慢理解它。还有就是尽可能找一下学校去年的试卷自己检测一下自己,看看自己还有那些问题。,所以最后把二次函数当中经常考的题型和大家分享一下:二次函数:。(1)当出现任意三个点坐标的时候,直接带入求出解析式。(2)当出现(X1,0),(X2,0)的时候,用双根式求解析式。(3)当出现(h,k)时,就用顶点式求解析式。(a,b,c,a+b+c,a-b+c,2a+b)a看开口方向(a>0开口向上,a0交y轴正半轴,=0过原点,>>,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。,是任何一对对应点所连线段的垂直平分线。。。,在这条线段的垂直平分线上。、对应角相等。:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y):等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。:等角对等边。,等于60,:三个角都相等的三角形是等腰三角形。有一个角是60的等腰三角形是等边三角形有两个角是60的三角形是等边三角形。,30角所对的直角边等于斜边的一半。,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且cb,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a即:a>ba-b>0;a=ba-b=0;aa-b>>返回目录如何提升中考数学成绩一、该记的记,该背的背,不要以为理解了就行有的同学认为,数学不像英语、社政,要背单词、背年代、背人名、地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如在化简二次根式时规定:“如果没有特别说明,本章根号内的字母都是正数。”等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函数值”等,我看我们的同学有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些公式和数据。对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打造不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手,左右逢源。二、了解几个重要的数学思想1、“方程”的思想数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二和初三我们学习了解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而为学好其它形式的方程打好基础。所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。2、“数形结合”的思想大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。3、“对应”的思想“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初二、初三我们还看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。4、“转化”的思想解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。比如,我们学校要扩大校园,需要向某村征地。而某村给了一块形状不规则的地,如何丈量它的面积呢?首先,使用适当的测量工具,依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。