1 / 20
文档名称:

【华师大版】山西省汾西县2021-2022学年中考联考数学试题含解析.doc

格式:doc   大小:831KB   页数:20页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

【华师大版】山西省汾西县2021-2022学年中考联考数学试题含解析.doc

上传人:guwutang 2025/1/17 文件大小:831 KB

下载得到文件列表

【华师大版】山西省汾西县2021-2022学年中考联考数学试题含解析.doc

相关文档

文档介绍

文档介绍:该【【华师大版】山西省汾西县2021-2022学年中考联考数学试题含解析 】是由【guwutang】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【【华师大版】山西省汾西县2021-2022学年中考联考数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2021-,,请务必将自己的姓名、、,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,,须用2B铅笔绘、写清楚,线条、符号等须加黑、、选择题(共10小题,每小题3分,共30分),如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()° ° ° °,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是( )A. . ,的二元一次方程组的解也是二元一次方程的解,则的值为A. B. C. ×105,则这个数是( ) B. =10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()×10-×10-××10-=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为( ) B.﹣1 ,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是( )A. . ,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为( ) ,( )×××× B. C. 、填空题(本大题共6个小题,每小题3分,共18分)﹣3有平方根,°,,已知,,,连续两次涨价后,,则x=,根据其规律猜想:、解答题(共8题,共72分)17.(8分)益马高速通车后,,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,.(8分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,.(8分)在中,,以为直径的圆交于,:.(8分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y==的表达式;求点B的坐标;求△.(8分)解不等式组:22.(10分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,.(12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)21000840020252200**********请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3),并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,、选择题(共10小题,每小题3分,共30分)1、C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,、C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-=>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:,①②得:,即,将代入①得:,即,将,代入得:,解得:.故选:.【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,,要看把原数变成a时,小数点移动了多少位,>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】×105=520000,故选A.【点睛】×10n的形式,其中1≤|a|<10,n为整数,、D【解析】×104,再和10-9相乘,×10-、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=.【考点】一元二次方程的解;、A【解析】根据题意,.【详解】∵BD=2,∠B=60°,∴点D到AB距离为,当0≤x≤2时,y=;当2≤x≤4时,y=.根据函数解析式,.【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,、C【解析】根据等腰三角形的性质和勾股定理解答即可.【详解】解:∵点A,D分别对应数轴上的实数﹣2,2,∴AD=4,∵等腰△ABC的底边BC与底边上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故选:C.【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,、D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,,要看把原数变成a时,小数点移动了多少位,>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=×105,故选:、A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,.【点睛】本题考查了绝对值和相反数,、填空题(本大题共6个小题,每小题3分,共18分)11、a≥1.【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得解得:故答案为【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,、9【解析】解:360÷40=9,即这个多边形的边数是913、65°【解析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠、.【解析】试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:,经检验,、20%.【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,:依题意,有:100(1+x)2=144,1+x=±,解得:x=20%或-(舍去).考点:一元二次方程的应用.