文档介绍:该【2022-2023学年江苏省苏州市高新区实验初级中学数学九上期末联考试题含解析 】是由【286919636】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年江苏省苏州市高新区实验初级中学数学九上期末联考试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.2019的相反数是( )
A. B.﹣ C.|2019| D.﹣2019
2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( )
A. B.
C. D.
3.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球( )
A.10个 B.20个 C.30个 D.无法确定
4.如图,在中,弦AB=12,半径与点P,且P为的OC中点,则AC的长是( )
A. B.6 C.8 D.
5.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是( )
A.
B.
C.
D.
6.计算:x(1﹣)÷的结果是( )
A. B.x+1 C. D.
7.把函数的图象,经过怎样的平移变换以后,可以得到函数的图象( )
A.向左平移个单位,再向下平移个单位
B.向左平移个单位,再向上平移个单位
C.向右平移个单位,再向上平移个单位
D.向右平移个单位,再向下平移个单位
8.,﹣π,,﹣中,倒数最小的数是( )
A. B. C.﹣π D.
9.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )
A. B. C.1 D.
10.如图,已知⊙O中,半径 OC 垂直于弦AB,垂足为D,若 OD=3,OA=5,则AB的长为( )
A.2 B.4 C.6 D.8
二、填空题(每小题3分,共24分)
11.小杰在楼下点A处看到楼上点B处的小明的仰角是42度,那么点B处的小明看点A处的小杰的俯角等于_____度.
12.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为_____.
13.如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是_____.
14.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.
15.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______ ; 若将绕点顺时针旋转,则顶点所经过的路径长为__________.
16.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为___.
17.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为______cm.
18.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.
三、解答题(共66分)
19.(10分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)
20.(6分)如图:在平面直角坐标系中,直线:与轴交于点,经过点的抛物线的对称轴是.
(1)求抛物线的解析式.
(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:.
(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?若存在,请求出点的坐标,如果不存在,请说明理由.
21.(6分)若抛物线y=ax2+bx﹣3的对称轴为直线x=1,且该抛物线经过点(3,0).
(1)求该抛物线对应的函数表达式.
(2)当﹣2≤x≤2时,则函数值y的取值范围为 .
(3)若方程ax2+bx﹣3=n有实数根,则n的取值范围为 .
22.(8分)如图,直线交轴于点,交轴于点,抛物线经过点,交轴于点,点为抛物线上一动点,过点作轴的垂线,交直线于点,设点的横坐标为.
(1)求抛物线的解析式.
(2)当点在直线下方的抛物线上运动时,求出长度的最大值.
(3)当以,,为顶点的三角形是等腰三角形时,求此时的值.
23.(8分)已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,AE⊥BD,垂足为E.
(1)求证:△ABE∽△DBC;
(2)若 AD=25,BC=32,求线段AE的长.
24.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1 上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标.
25.(10分)如图,已知抛物线的图象经过点、和原点,为直线上方抛物线上的一个动点.
(1)求直线及抛物线的解析式;
(2)过点作轴的垂线,垂足为,并与直线交于点,当为等腰三角形时,求的坐标;
(3)设关于对称轴的点为,抛物线的顶点为,探索是否存在一点,使得的面积为,如果存在,求出的坐标;如果不存在,请说明理由.
26.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
参考答案
一、选择题(每小题3分,共30分)
1、D
【解析】根据只有符号不同的两个数互为相反数,可得答案
【详解】2019的相反数是﹣2019,故选D.
【点睛】
此题考查相反数,掌握相反数的定义是解题关键
2、B
【分析】根据相似三角形的判定方法一一判断即可.
【详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选B.
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
3、B
【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,
设口袋中大约有x个白球,则,
解得x=1.
经检验:x=1是原方程的解
故选B.
4、D
【分析】根据垂径定理求出AP,连结OA根据勾股定理构造方程可求出OA、OP,再求出PC,最后根据勾股定理即可求出AC.
【详解】解:如图,连接OA,
∵AB=12,OC⊥AB,OC过圆心O,
∴AP=BP=AB=6,
∵P为的OC中点,
设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,
在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,
即:(2R)2=R2+62,
解得:R=,
即OP=PC=,
在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,
即AC2=62+
解得:AC=
故选:D.
【点睛】
本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.
5、C
【解析】设圆的半径为,连接,求出,根据CA⊥AB,求出,即可求出函数的解析式为.
【详解】设:圆的半径为,连接,
则,
,即是圆的切线,则,
则
则
图象为开口向下的抛物线,
故选:.
【点睛】
本题考查了圆、三角函数的应用,熟练掌握函数图像是解题的关键.
6、C
【分析】直接利用分式的性质化简进而得出答案.
【详解】解:原式=
=.
故选:C.
【点睛】
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
7、C
【分析】根据抛物线顶点的变换规律作出正确的选项.
【详解】抛物线的顶点坐标是,抛物线线的顶点坐标是,
所以将顶点向右平移个单位,再向上平移个单位得到顶点,
即将函数的图象向右平移个单位,再向上平移个单位得到函数的图象.
故选:C.
【点睛】
主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
8、A
【解析】先根据倒数的定义计算,再比较大小解答.
【详解】解:,﹣π,,﹣中,倒数最小的数是两个负数中一个,
所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣,﹣的倒数是﹣≈﹣4472,
所以﹣>﹣,
故选:A.
【点睛】
本题考查了倒数的定义.解题的关键是掌握倒数的定义,会比较实数的大小.
9、A
【解析】试题分析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.
故选A.
考点:概率公式.
10、D
【解析】利用垂径定理和勾股定理计算.
【详解】根据勾股定理得,
根据垂径定理得AB=2AD=8
故选:D.
【点睛】
考查勾股定理和垂径定理,熟练掌握垂径定理是解题的关键.
二、填空题(每小题3分,共24分)
11、1
【解析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小明看点A处的小杰的俯角的度数,本题得以解决.
【详解】解:由题意可得,
∠BAO=1°,
∵BC∥AD,
∴∠BAO=∠ABC,
∴∠ABC=1°,
即点B处的小明看点A处的小杰的俯角等于1度,
故答案为:1.
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.
12、2
【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.
【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴