文档介绍:该【行政机关各测评要素真题之数量关系能力含答案(a卷) 】是由【小屁孩】上传分享,文档一共【106】页,该文档可以免费在线阅读,需要了解更多关于【行政机关各测评要素真题之数量关系能力含答案(a卷) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。行政机关各测评要素真题之数量关系能力
第一部分 单选题(300题)
1、2,3,5,7,( )
A、8
B、9
C、11
D、12
【答案】:答案:C
解析:2,3,5,7,为连续的质数数列,7后面质数为11,则所求项为11。故选C。
2、-1,6,25,62,( )
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。
3、13×99+135×999+1357×9999的值是( )。
A、13507495
B、13574795
C、13704675
D、13704795
【答案】:答案:D
解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故选D。
4、95,88,71,61,50,( )
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故选A。
5、2,3,6,18,108,( )
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。
6、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?( )
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。
7、2,7,13,20,25,31,( )
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。
8、2,12,40,112,( )
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。
9、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是( )。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。
10、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?( )
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。
11、-56,25,-2,7,4,( )
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。
12、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅( )套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。
13、1/2,1,1,( ),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,( ),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。
14、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会指在相同的分钟位置?
A. 24
B. 26
C. 28
D. 30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时三个分针处于同一个位置。故正确答案为D。
15、甲、乙、丙、丁四人开展羽毛球比赛,首轮每人需和另外3人各比1场,获胜2场及以上者进入下一轮,否则淘汰。甲胜乙、丙、丁的概率分别为70%、50%、40%,问甲首轮遭淘汰的概率是多少?( )
A、%
B、45%
C、%
D、48%
【答案】:答案:B
解析:获胜2场及以上者进入下一轮,甲首轮遭淘汰,则甲输了2场或者3场。分别枚举如下:(1)甲输三场的概率为30%×50%×60%=9%;(2)甲输两场有三种可能:①赢乙输丙丁,概率为70%×50%×60%=21%;②赢丙输乙丁,概率为30%×50%×60%=9%;③赢丁输乙丙,概率为30%×50%×40%=6%。甲首轮遭淘汰的概率为9%+21%+9%+6%=45%。故选B。
16、9,20,42,86,( ),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。
17、2,11,32,( )
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:观察题干数列可得:2=13+1,11=23+3,32=33+5,( )=43+7。故括号处应为71。故选C。
18、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为( )分。
A、88
B、85
C、80
D、75
【答案】:答案:C
解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。
19、5,10,20,( ),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比为2的等比数列。故选B。
20、1,3,10,37,( )
A、112
B、144
C、148
D、158
【答案】:答案:B
解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故选B。
21、有一支参加阅兵的队伍正在进行训练,这支队伍的人数是5的倍数且不少于1000人,如果按每横排4人编队,最后少3人,如果按每横排3人编队,最后少2人;如果按每横排2人编队,最后少1人。请问,这支队伍最少有多少人?( )
A、1045
B、1125
C、1235
D、1345
【答案】:答案:A
解析:问最少,由小到大代入选项:代入A选项,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,满足题意。故选A。
22、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材( )根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。
23、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了( )元。
A.
B.
C.
D.
【答案】:答案:A
解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,×(10+x)。×(10+x)-10=5+,,所以按照比例,乙的行李超出了重量x,超出金额为18元,得到,解得x=4,所以超出部分单价为18÷4=。所以超出10公斤部分每公斤收费标准比10公斤以内的低了6-=。解析二:盈亏思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分为18元,所以对应的多50%的重量,应该是27元。,,这个钱数应该对应着10公斤的50%,。,超出10公斤部分每公斤收费标准比10公斤以内的低了6-=,得解。故正确答案为A。速解:靠常识解决,题目中说“超出10公斤部分每公斤收费标准略低一些。”所以选稍微低一点的
24、4,5,7,9,13,15,( )
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。
25、1,7,8,57,( )
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。
26、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?( )
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。
27、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?( )
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。