文档介绍:该【2025山东省公务员考试数量关系专项练习题附参考答案(典型题) 】是由【北京】上传分享,文档一共【106】页,该文档可以免费在线阅读,需要了解更多关于【2025山东省公务员考试数量关系专项练习题附参考答案(典型题) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2025山东省公务员考试数量关系专项练习题
第一部分 单选题(300题)
1、1,2,9,64,( )
A、250
B、425
C、625
D、650
【答案】:答案:C
解析:10,21,32,43,(54)=625。故选C。
2、12,23,35,47,511,( )
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。
3、-13,19,58,106,165,( )
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。
4、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?( )
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。
5、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?( )
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。
6、-1,3,-3,-3,-9,( )
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。
7、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。( )
A、40%
B、%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。
8、2,3,5,7,( )
A、8
B、9
C、11
D、12
【答案】:答案:C
解析:2,3,5,7,为连续的质数数列,7后面质数为11,则所求项为11。故选C。
9、2,6,13,39,15,45,23,( )
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。
10、80×35×15的值是( )。
A、42000
B、36000
C、33000
D、48000
【答案】:答案:A
解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。
11、3,6,11,( ),27
A、15
B、18
C、19
D、24
【答案】:答案:B
解析:相邻两项后一项减前一项,6-3=3,11-6=5,18-11=7,27-18=9,构成公差为2的等差数列。即所填数字为11+7=18,27-9=18。故选B。
12、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?( )
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。
13、1,10,3,5,( )
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。
14、1,6,36,216,( )
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比为6的等比数列。故选A。
15、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?( )
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。
16、8,10,14,18,( )
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。
17、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?( )
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。
18、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?( )
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。
19、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?( )
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。
20、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材( )根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。
21、1,1,3,7,17,41,( )
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。
22、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?( )
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。
23、2,6,18,54,( )
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。
24、145,120,101,80,65,( )
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。
25、95,88,71,61,50,( )
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故选A。
26、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有( )人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。
27、2,3,6,18,108,( )
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。
28、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?( )
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。
29、2,14,84,420,1680,( )
A、2400
B、3360
C、4210
D、5040
【答案】:答案:D
解析:两两做商得到7,6,5,4,按此规律下一项为3,所以所求项为1680×3=5040。故选D。