文档介绍:该【(完整版)初一数学下册不等式试题(带答案)-(二)培优试卷 】是由【海洋里徜徉知识】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【(完整版)初一数学下册不等式试题(带答案)-(二)培优试卷 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、选择题
1.正整数n小于100,并且满足等式,其中表示不超过x的最大整数,例如:,则满足等式的正整数的个数为( )
A.2 B.3 C.12 D.16
2.已知关于,的方程组,其中,下列结论:
①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确的是( )
A.①② B.②③ C.②③④ D.①③④
3.已知关于的不等式组的整数解只有三个,则的取值范围是( )
A.或 B. C. D.
4.如果关于的不等式组仅有四个整数解:-1,0,1,2,那么适合这个为等式组的整数组成的有序实数对最多共有( )
A.2个 B.4个 C.6个 D.9个
5.解不等式时,我们可以将其化为不等式或得到的解集为或,利用该题的方法和结论,则不等式的解集为( )
A. B. C. D.或
6.如果m>n,那么下列结论错误的是( )
A.m+2>n+2 B.﹣2m>﹣2n C.2m>2n D.m﹣2>n﹣2
7.若关于x的不等式的正整数解是1,2,3,则整数m的最大值是( )
A.10 B.11 C.12 D.13
8.不等式组只有4个整数解,则的取值范围是( )
A. B.
C. D.
9.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则下列选项中,不符合条件的整数m的值是( )
A.﹣4 B.2 C.4 D.5
10.若关于x的不等式mx- n>0的解集是,则关于x的不等式的解集是( )
A. B. C. D.
二、填空题
11.已知,则代数式最大值与最小值的差是________.
12.“输入一个实数 x,然后经过如图的运算,到判断是否大于 190 为止”叫做一次操作,那么恰好经过三次操作停止,则x的取值范围是_______________.
13.不等式组的解集为,则的取值范围为_____.
14.关于x的不等式组的解集中每一个值均不在的范围内,则的取值范围是____________.
15.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,,:;如果只去掉一个最高分,;如果只去掉一个最低分,,所有裁判员所给分数中的最低分最少可以是________分.
16.不等式3x﹣3m≤﹣2m的正整数解为1,2,3,4,则m的取值范围是_____.
17.若关于的不等式组恰好只有2个整数解,则所有满足条件的整数的值有______个.
18.已知不等式的正整数解恰好是1、2、3,则的取值范围是______.
19.不等式组的所有正整数的和是 _____.
20.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材共50套,A,B
两种型号健身器材的购买价格分别为每套310元,460元,且每种型号健身器材必须整套购买.若购买支出不超过18000元,求A种型号健身器材至少要购买 _____套.
三、解答题
21.如果 x 是一个有理数,我们定义{x} 表示不小于 x 的最小整数. 如{} = 4 , {-} = -2 , {5} = 5 , {-6} = -,任意一个有理数都能写成 x = {x} - b 的形式( 0≤b<1 ).
(1)直接写出{x} 与 x , x + 1的大小关系;
提示1:用“不完全归纳法”推导{x} 与 x , x + 1的大小关系;
提示2:用“代数推理”的方法推导{x} 与 x , x + 1的大小关系.
(2)根据(1)中的结论解决下列问题:
① 直接写出满足{3m + 7} = 4 的 m 取值范围;
② 直接写出方程{ - 2} = 2n + 1 的解..
22.如图①,在平直角坐标系中,△ABO的三个顶点为A(a,b),B(﹣a,3b),O(0,0),且满足|b﹣2|=0,线段AB与y轴交于点C.
(1)求出A,B两点的坐标;
(2)求出△ABO的面积;
(3)如图②,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记△的面积为S,若24<S<32,求点的横坐标的取值范围.
23.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.
(1)求,的坐标.
(2)若点为轴正半轴上的一个动点.
①如图1,当时,与的平分线交于点,求的度数;
②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.
24.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,
已知,.
(1)求,的值;
(2)求.
(3)若关于的不等式组恰好有4个整数解,求的取值范围.
25.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3).
(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为 ;
(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ;
(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ;
(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求
m的取值范围.
26.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.
材料2:求方程的正整数解.
解:由已知得:……①
设(为整数),则……②
把②代入①得:.
所以方程组的解为 ,
根据题意得:.
解不等式组得0<<.所以的整数解是1,2,3.
所以方程的正整数解是:,,.
根据以上材料回答下列问题:
(1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号);
(2)仿照上面的方法,求方程的正整数解;
(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)
27.某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,().如果往返都乘同一出租车并且中间等候时间不超过3分钟,.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:
方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);
方案二:4人乘同一辆出租车往返.
问选择哪种计费方式更省钱?(写出过程)
28.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:
(1)求A、B两点的坐标;
(2)设三角形ABC面积为,若4<≤7,求m的取值范围;
(3)设,请给出,满足的数量关系式,并说明理由.
29.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当-1£x£ 1时,代数式在x=±1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1£x£1这个范围内,则称代数式是-1£x£1的“湘一代数式”.
(1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”.
(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值.
(3)若关于的代数式是的“湘一代数式”,求m的取值范围.
30.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆
(1)学校准备租用辆客车,有几种租车方案?
(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?
(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
利用不等式[x]≤x即可求出满足条件的n的值.
【详解】
解:若,,有一个不是整数,
则或者或者,
∴,
∴,,都是整数,即n是2,3,6的公倍数,且n<100,
∴n的值为6,12,18,24,......96,共有16个,
故选:D.
【点睛】
本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x]≤x<[x]+1式子的应用,这个式子在取整中经常用到.
2.D
解析:D
【分析】
将原方程求解,用a表示x和y,然后根据a的取值范围,求出x和y的取值范围,然后逐一判断每一项即可.
【详解】
由,解得
∵
∴,
①当时,解得,故①正确;
②不是方程组的解,故②错误;
③当时,解得,此时,故③正确;
④若,即,解得,故④正确;
故选D.
【点睛】
本题考查了二元一次方程组,解一元一次不等式,熟练掌握二元一次方程组的解法和不等式的解法是本题的关键.
3.C
解析:C
【分析】
分别求出不等式的解集,根据不等式组有解得到,再根据不等式组有三个整数解得到,求解即可.
【详解】
解:,
解不等式①得x<2a-4,
解不等式②得,
∵不等式组有解,
∴,
∵不等式组的整数解只有三个,
∴,
解得,
故选:C.
【点睛】
此题考查不等式组的整数解的情况求参数,正确理解不等式组的整数解只有三个得到关于参数的不等式是解题的关键.
4.C
解析:C
【分析】
先求出不等式组的解集,得出关于m、n的不等式组,求出整数m、n的值,即可得出答案.
【详解】
∵解不等式得:,
解不等式得:,
∴不等式组的解集是,
∵关于x的不等式组的整数解仅有-1,0,1,2,
∴,,
解得:,,
即的整数值是-3,-2,的整数值是6,7,8,
即适合这个不等式组的整数m,n组成的有序数对(m,n)共有6个,是(-3,6),(-3,7),(-3,8),(-2,6),(-2,7),(-2,8).
故选:C.
【点睛】
本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m、n的值.
5.D
解析:D
【分析】
根据已知形式化成不等式组分别求解即可;
【详解】
由题可得,将不等式化为或,
解不等式组,
由得,
由得或,
∴不等式的解集为:;
解不等式组,
由得,
由得,
∴不等式组的解集为:,
∴不等式组的解析为或.
故选D.
【点睛】
本题主要考查了一元一次不等式组的求解,准确根据已知条件组合不等式组求解是解题的关键.
6.B
解析:B
【分析】
根据不等式的性质(①不等式的两边都加上或减去同一个数或整式,不等号的方向不发生改变;②不等式的两边都乘以或除以同一个负数,不等号的方向发生改变;③不等式的两边都乘以或除以同一个正数,不等号的方向不发生改变)判断即可.
【详解】
解:A.∵m>n,
∴m+2>n+2,故本选项不合题意;
B.∵m>n,
∴﹣2m<﹣2n,故本选项符合题意;
C.∵m>n,
∴2m>2n,故本选项不合题意;
D.∵m>n,
∴m﹣2>n﹣2,故本选项不合题意;
故选:B.
【点睛】
此题主要考查不等式的性质,解题的关键是熟知不等式的性质的运用.
7.D
解析:D
【分析】
先解不等式得到x<,再根据正整数解是1,2,3得到3<≤4时,然后从不等式的解集中找出适合条件的最大整数即可.
【详解】
解不等式得x<,
关于x的不等式的正整数解是1,2,3,
3<≤4,解得10 < m≤ 13,
整数m的最大值为13.
故选:D.
【点睛】
本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.
8.A
解析:A
【分析】
根据不等式组解出x的取值范围,顺推出4个整数解,即可确定a的取值范围.
【详解】
根据不等式
解得
已知不等式组有解,即
有4个整数解,分别是:5,6,7,8
所以a应该满足