文档介绍:(3)
菱形
情景创设
前面我们学行四边形有一个角是直角时,成为什么图形?
(矩形,由角变化得到)
如果从边的角度,将平行四边形特殊化,又会得到什么特殊的四边形呢?
想一想
在平行四边形中,如果内角大小保持不变仅改变边的长度,能否得到一个特殊的平行四边形?
平行四边形
有一组邻边相等的平行四边形叫菱形
菱形
邻边相等
活动一:
感受
生活
让我们一同走进生活中的菱形
菱形就在我们身边
图片欣赏
师生互动
将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即得一个菱形.
菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?
B
D
A
C
菱形是轴对称图形
探究菱形的性质
(2)从图中你能得到哪些结论?并说明理由.
提示:从边、角、对角线、等方面来探讨
(1)观察得到的菱形, 它是轴对称图形吗?如果是,有几条对称轴?
对称轴之间有什么位置关系?
由于平行四边形的对边相等,而菱形的邻边相等,
故:
菱形的性质2:
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形是特殊的平行四边形,具有平行四
边形的所有性质.
菱形的性质:
B
D
A
C
菱形的性质1:
菱形的四条边都相等。
又:
符号语言
∵四边形ABCD是菱形
∴AB=BC=CD=AD
已知:菱形ABCD的对角线AC和BD相交于点O,如下图,
证明:∵四边形ABCD是菱形
A
B
C
D
O
在△ABD中,
又∵BO=DO
∴AB=AD(菱形的四条边都相等)
∴AC⊥BD,AC平分∠BAD
同理: AC平分∠BCD;
BD平分∠ABC和∠ADC
求证:AC⊥BD ;
AC平分∠BAD和∠BCD ;BD平分∠ABC和∠ADC
命题:菱形的对角线互相垂直平分,
并且每一条对角线平分一组对角;
符号语言
∵四边形ABCD是菱形
∴ AC⊥BD
AC平分∠BAD和∠BCD ;
BD平分∠ABC和∠ADC
菱形的两条对角线互相平分
菱形的两组对边平行且相等
边
对角线
角
数学语言
菱形的性质
菱形的四条边相等
菱形的两组对角分别相等
菱形的邻角互补
菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
∵四边形ABCD是菱形
∥
=
∴ AD BC
AB CD
∥
=
∴ AB=BC=CD=DA
A
D
C
B
O
∴∠DAC=∠BAC
∠DCA=∠BCA
∠ADB=∠CDB
∠ABD=∠CBD
AC⊥BD
∴ OA=OC;OB=OD
∴∠DAB=∠DCB
∠ADC=∠ABC
∴∠DAB+∠ABC= 180°