1 / 16
文档名称:

2022-2023学年山东省青岛市第五十八中学高三第二次联考数学试卷含解析.doc

格式:doc   大小:1,372KB   页数:16页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2022-2023学年山东省青岛市第五十八中学高三第二次联考数学试卷含解析.doc

上传人:zhilebei 2025/4/7 文件大小:1.34 MB

下载得到文件列表

2022-2023学年山东省青岛市第五十八中学高三第二次联考数学试卷含解析.doc

相关文档

文档介绍

文档介绍:该【2022-2023学年山东省青岛市第五十八中学高三第二次联考数学试卷含解析 】是由【zhilebei】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年山东省青岛市第五十八中学高三第二次联考数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数满足,则( )
A. B. C. D.
2.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为( )
A. B. C. D.
3.椭圆的焦点为,点在椭圆上,若,则的大小为( )
A. B. C. D.
4.数列满足:,则数列前项的和为
A. B. C. D.
5.已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )
A. B. C. D.
6.已知复数满足(其中为的共轭复数),则的值为( )
A.1 B.2 C. D.
7.,则与位置关系是 (  )
A.平行 B.异面
C.相交 D.平行或异面或相交
8.已知函数,则在上不单调的一个充分不必要条件可以是( )
A. B. C.或 D.
9.已知,,,则( )
A. B.
C. D.
10.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )
A. B. C. D.
11.已知数列的首项,且,其中,,,下列叙述正确的是( )
A.若是等差数列,则一定有 B.若是等比数列,则一定有
C.若不是等差数列,则一定有 D.若不是等比数列,则一定有
12.若向量,,则与共线的向量可以是(  )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知实数满足则点构成的区域的面积为____,的最大值为_________
14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,.
15.已知等差数列的前n项和为,,,则=_______.
16.的展开式中常数项是___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4­4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.
18.(12分)已知集合,集合.
(1)求集合;
(2)若,求实数的取值范围.
19.(12分)已知数列的前项和为,且满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)证明:.
20.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
21.(12分)在直角坐标系中,曲线的参数方程为(为参数,),,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程,并指出其形状;
(2)曲线与曲线交于,两点,若,求的值.
22.(10分)已知不等式的解集为.
(1)求实数的值;
(2)已知存在实数使得恒成立,求实数的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.
【详解】
由题可知:
由,所以
所以
故选:A
【点睛】
本题主要考查复数的运算,考验计算,属基础题.
2、B
【解析】
首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”, 记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;
【详解】
解:从9个球中摸出3个球,则基本事件总数为(个),
则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”
记事件“恰好不同时包含字母,,”为,则.
故选:B
【点睛】
本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.
3、C
【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.
【详解】
由题意,,,又,则,
由余弦定理可得.
故.
故选:C.
【点睛】
本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.
4、A
【解析】
分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.
详解:∵,∴,
又∵=5,
∴,即,
∴,
∴数列前项的和为,
故选A.
点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)
;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
5、C
【解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.
【详解】
由双曲线,
则渐近线方程:,


连接,则,解得,
所以,解得.
故双曲线方程为.
故选:C
【点睛】
本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.
6、D
【解析】
按照复数的运算法则先求出,再写出,进而求出.
【详解】


.
故选:D
【点睛】
本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.
7、D
【解析】
结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.
选D.
8、D
【解析】
先求函数在上不单调的充要条件,即在上有解,即可得出结论.
【详解】

若在上不单调,令,
则函数对称轴方程为
在区间上有零点(可以用二分法求得).
当时,显然不成立;
当时,只需
或,解得或.
故选:D.
【点睛】
本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.
9、C
【解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.
【详解】

所以,即.
故选:C.
【点睛】
本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.
10、C
【解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.
【详解】
如图所示:在平面的投影为正方形的中心,故球心在上,
,故,,
设球半径为,则,解得,故.
故选:.
【点睛】
本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.
11、C
【解析】
根据等差数列和等比数列的定义进行判断即可.
【详解】
A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;
B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;
C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;
D:当 时,若时,显然数列是等比数列,故本说法不正确.
故选:C
【点睛】
本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.
12、B
【解析】
先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.
【详解】
故选B
【点睛】
本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.
二、填空题:本题共4小题,每小题5分,共20分。
13、8 11
【解析】
画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.
【详解】
不等式组表示的平面区域如下图所示:
数形结合可知,可行域为三角形,且底边长,高为,
故区域面积;
令,变为,
显然直线过时,z最大,故.
故答案为:;11.
【点睛】
本题考查简单线性规划问题,涉及区域面积的求解,属基础题.