文档介绍:该【2025年高中数学教学设计优秀 】是由【feifei】上传分享,文档一共【32】页,该文档可以免费在线阅读,需要了解更多关于【2025年高中数学教学设计优秀 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。
2025年高中数学教学设计优秀
高中数学教学设计优秀1
一、课题:
人教版全日制普通高级中学教科书数学第一册(上)《》
二、指导思想与理论依据:
《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。
三、教材分析:
本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。
四、学情分析:
在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。
五、教学目标:
(一)教学知识点:
。
。
(二)能力目标:
。
。
(三)德育渗透目标:
,
。
六、教学重点与难点:
重点是对数定义,难点是对数概念的理解。
七、教学方法:
讲练结合法八、教学流程:
问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)
八、教学反思:
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的`处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。
对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。
高中数学教学设计优秀2
一、教学目标设计
通过实例理解充分条件、必要条件的意义。
能够在简单的问题情境中判断条件的充分性、必要性。
二、教学重点及难点
充分条件、必要条件的判断;
充分条件、必要条件的判断方法。
三、教学流程设计
四、教学过程设计
一、概念引入
早在战国时期,《墨经》中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。
今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。
二、概念形成
1、 首先请同学们判断下列命题的真假
(1)若两三角形全等,则两三角形的面积相等。
(2)若三角形有两个内角相等,则这个三角形是等腰三角形。
(3)若某个整数能够被4整除,则这个整数必是偶数。
(4) 若ab=0,则a=0。
解答:命题(2)、(3)、(4)为真。命题(4)为假;
2、请同学用推断符号写出上述命题。
解答:(1)两三角形全等 两三角形的面积相等。
(2) 三角形有两个内角相等 三角形是等腰三角形。
(3) 某个整数能够被4整除则这个整数必是偶数;
(4)ab=0 a=0。
3、充分条件与必要条件
继续结合上述实例说明什么是充分条件、什么是必要条件。
若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立
充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。
[说明]:①可以解释为:为了使成立,具备条件就足够了。②可进一步解释为:有它即行,无它也未必不行。③结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。)
必要条件:如果,那么叫做的必要条件。
[说明]:①可以解释为若,则叫做的必要条件,是的充分条件。②无它不行,有它也不一定行③结合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。
回答上述问题(1)、(2)中的条件关系。
(1)中:两三角形全等是两三角形的面积相等的充分条件;两三角形的面积相等是两三角形全等的必要条件。
(2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。
4、拓广引申
把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢?
关系可分为四类:
(1)充分不必要条件,即,而
(2)必要不充分条件,即,而
(3)既充分又必要条件,即,又有
(4)既不充分也不必要条件,即,又有。
三、典型例题(概念运用)
例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4)
(2) 是 的什么条件。
(3)a+b是1,b什么条件。
解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。
(2)充分不必要条件。
(3)必要不充分条件。
[说明]①如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。②要否定条件的`充分性、必要性,则只需举一反例即可。
例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q:
灯亮。(补充例题)
[说明]①图中含有两个开关时,p表示其中一个闭合,另一个情况不确定。②加强学科之间的横向沟通,通过图示,深化概念认识。
例3、探讨下列生活中名言名句的充要关系。(补充例题)
(1)头发长,见识短。
(2)骄兵必败。
(3)有志者事竟成。
(4)春回大地,万物复苏。
(5)不入虎穴、焉得虎子
(6)四肢发达,头脑简单
[说明]通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。
四、巩固练习
1、课本P/(1)
2:填表(补充)
p q p是q的
什么条件 q是p的
什么条件
两个角相等 两个角是对顶角
内错角相等 两直线平行
四边形对角线相等 四边形是平行边形
a=b ac=bc
[说明]通过练习,及时巩固所学新知,反馈教学效果。
五、课堂小结
1、本节课主要研究的内容:
推断符号,
充分条件的意义 命题充分性、必要性的判断。
必要条件的意义
2、 充分条件、必要条件判别步骤:
① 认清条件和结论。
② 考察p q和q p的真假。
3、充分条件、必要条件判别技巧:
① 可先简化命题。
② 否定一个命题只要举出一个反例即可。
③ 将命题转化为等价的逆否命题后再判断。
六、课后作业
书面作业:课本P/,2,3。
五、教学设计说明
1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。
2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。
3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。
4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、相互交流中去给概念下定义,去体会概念的本质属性。
高中数学教学设计优秀3
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用.
教学过程设计
第一课时:四种命题
一、导入新课
1.把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等.
2.什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.
值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等.
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础.
二、新课
命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?