文档介绍:该【2023届陕西省西安市83中学高考全国统考预测密卷数学试卷含解析 】是由【guwutang】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2023届陕西省西安市83中学高考全国统考预测密卷数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知等差数列中,,,则数列的前10项和( )
A.100 B.210 C.380 D.400
2.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则( )
A., B.,
C., D.,
3.设,,则“”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
4.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )
A. B. C. D.
5.函数在区间上的大致图象如图所示,则可能是( )
A.
B.
C.
D.
6.已知整数满足,记点的坐标为,则点满足的概率为( )
A. B. C. D.
7.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为( )
A. B. C. D.
8.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则( )
A. B.
C. D.
9.在中,,,,点,分别在线段,上,且,,则( ).
A. B. C.4 D.9
10.若复数满足(为虚数单位),则其共轭复数的虚部为( )
A. B. C. D.
11.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )
A.30° B.45° C.60° D.75°
12.已知函数,其中,若恒成立,则函数的单调递增区间为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,且,则实数m的值是________.
14.数列满足,则,∈N*使得成立,则实数λ的最小值为______
15.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.
16.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(Ⅰ)当时,求函数在上的值域;
(Ⅱ)若函数在上单调递减,求实数的取值范围.
18.(12分)已知函数,其中,.
(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.
(2)若在处取得极大值,求实数a的取值范围.
19.(12分)已知点为圆:上的动点,为坐标原点,过作直线的垂线(当、重合时,直线约定为轴),垂足为,以为极点,轴的正半轴为极轴建立极坐标系.
(1)求点的轨迹的极坐标方程;
(2)直线的极坐标方程为,连接并延长交于,求的最大值.
20.(12分)已知函数.
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数在上最小值.
21.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.
(Ⅰ)求证:平面平面;
(ⅠⅠ)求直线与平面所成的角的正弦值.
22.(10分)已知,其中.
(1)当时,设函数,求函数的极值.
(2)若函数在区间上递增,求的取值范围;
(3)证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.
【详解】
设公差为,,,
,
.
故选:B.
【点睛】
本题考查等差数列的基本量计算以及前项和,属于基础题.
2、A
【解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.
【详解】
如图所示,利用排除法,取与重合时的情况.
不妨设,延长到,使得.
,,,,则,
由余弦定理得,
,,
又,,
当平面平面时,,,排除B、D选项;
因为,,此时,,
当平面平面时,,,排除C选项.
故选:A.
【点睛】
本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.
3、A
【解析】
根据对数的运算分别从充分性和必要性去证明即可.
【详解】
若, ,则,可得;
若,可得,无法得到,
所以“”是“”的充分而不必要条件.
所以本题答案为A.
【点睛】
本题考查充要条件的定义,判断充要条件的方法是:
① 若为真命题且为假命题,则命题p是命题q的充分不必要条件;
② 若为假命题且为真命题,则命题p是命题q的必要不充分条件;
③ 若为真命题且为真命题,则命题p是命题q的充要条件;
④ 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.
⑤ 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
4、A
【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.
【详解】
对于命题,由于,,由于,由解得,且,所以是奇函数,. 、、都是假命题.
故选:A
【点睛】
本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.
5、B
【解析】
根据特殊值及函数的单调性判断即可;
【详解】
解:当时,,无意义,故排除A;
又,则,故排除D;
对于C,当时,,所以不单调,故排除C;
故选:B
【点睛】
本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.
6、D
【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.
【详解】
因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有
共37个,
满足的整数点有7个,则所求概率为.
故选:.
【点睛】
本题考查了古典概率的计算,意在考查学生的应用能力.
7、D
【解析】
由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,
可知为的三等分点,且,
点在直线上,并且,则,,
设,则,
解得,即,
代入双曲线的方程可得,解得,故选D.
点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).
8、B
【解析】
设,则,,
由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.
【详解】
设,则,,
因为B,P,D三点共线,C,P,E三点共线,
所以,,所以,.
故选:B.
【点睛】
本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.
9、B
【解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.
【详解】
根据题意,,则
在中,又,
则
则
则
则
故选:B
【点睛】
此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.
10、D
【解析】
由已知等式求出z,再由共轭复数的概念求得,即可得虚部.
【详解】
由zi=1﹣i,∴z= ,所以共轭复数=-1+,虚部为1
故选D.
【点睛】
本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.
11、C
【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.
【详解】
如图所示:作垂直于准线交准线于,则,
在中,,故,即.
故选:.
【点睛】
本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.
12、A
【解析】
,从而可得,,再解不等式即可.
【详解】
由已知,
,所以,
,由,
解得,.
故选:A.
【点睛】
本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【解析】
根据