1 / 23
文档名称:

2023届青海省西宁市城西区海湖中学高三考前热身数学试卷含解析.doc

格式:doc   大小:2,035KB   页数:23页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2023届青海省西宁市城西区海湖中学高三考前热身数学试卷含解析.doc

上传人:guwutang 2025/4/9 文件大小:1.99 MB

下载得到文件列表

2023届青海省西宁市城西区海湖中学高三考前热身数学试卷含解析.doc

相关文档

文档介绍

文档介绍:该【2023届青海省西宁市城西区海湖中学高三考前热身数学试卷含解析 】是由【guwutang】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【2023届青海省西宁市城西区海湖中学高三考前热身数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图是计算值的一个程序框图,其中判断框内应填入的条件是( )
A.
B.
C.
D.
2.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )
A. B. C. D.
3.从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则  
A. B. C. D.
4.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为(  )
A. B.
C. D.
5.若x,y满足约束条件且的最大值为,则a的取值范围是( )
A. B. C. D.
6.函数的图象大致为( )
A. B.
C. D.
7.已知向量,,若,则与夹角的余弦值为( )
A. B. C. D.
8.已知命题p:直线a∥b,且b⊂平面α,则a∥α;命题q:直线l⊥平面α,任意直线m⊂α,则l⊥( )
A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)
9.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )
A. B.4 C.2 D.
10.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )
A. B. C. D.
11.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( )
A. B.
C. D.
12.抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为( )
A. B. C.1 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的极大值为________.
14.设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则________
15.在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____.
16.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.
“我身边的榜样”评选选票
候选人
符号
注:
1.同意画“○”,不同意画“×”.
2.每张选票“○”的个数不超过2时才为有效票.



三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.
(l)求直线的普通方程和曲线C的直角坐标方程:
(2)若直线与曲线C相交于A,B两点,且.求直线 的方程.
18.(12分)已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为
(1)求椭圆的方程;
(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.
19.(12分)已知抛物线上一点到焦点的距离为2,
(1)求的值与抛物线的方程;
(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.
20.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.
(1)求椭圆的标准方程;
(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.
21.(12分)如图所示,四棱柱中,底面为梯形,,,
,,,.
(1)求证:;
(2)若平面平面,求二面角的余弦值.
22.(10分)已知函数(),且只有一个零点.
(1)求实数a的值;
(2)若,且,证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.
【详解】
因为该程序图是计算值的一个程序框圈
所以共循环了5次
所以输出S前循环体的n的值为12,k的值为6,
即判断框内的不等式应为或
所以选C
【点睛】
本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.
2、B
【解析】

可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.
【详解】
,所以离心率,
又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,
而焦点到双曲线渐近线的距离为,所以,即,
所以,所以双曲线的离心率的取值范围是.
故选:B
【点睛】
本题考查双曲线的离心率的范围,考查双曲线的性质的应用.
3、B
【解析】
由题意知,,由,知,由此能求出.
【详解】
由题意知,,
,解得,


故选:B.
【点睛】
本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.
4、A
【解析】
由题意可得,即,代入双曲线的渐近线方程可得答案.
【详解】
依题意椭圆与双曲线即的焦点相同,可得:,
即,∴,可得,
双曲线的渐近线方程为:,
故选:A.
【点睛】
本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.
5、A
【解析】
画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.
【详解】
作出约束条件表示的可行域,,所以在点处取得最大值,则,即.
故选:A
【点睛】
本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
6、A
【解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.
【详解】
时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.
故选:A.
【点睛】
本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.
7、B
【解析】
直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.
【详解】
依题意,, 而, 即, 解得, 则.
故选:B.
【点睛】
本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.
8、C
【解析】
首先判断出
为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.
【详解】
根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;
根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.
故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.
故选:C.
【点睛】
本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.
9、B
【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.
【详解】
解:抛物线焦点,准线,
过作交于点,连接
由抛物线定义,

当且仅当三点共线时,取“=”号,
∴的最小值为.
故选:B.
【点睛】
本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.
10、A
【解析】
结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前
项和公式和对数恒等式即可求解
【详解】
如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.
故选:A
【点睛】
本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题
11、B
【解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.
【详解】
如图,,设为的中点,为的中点,
由图可知过且与平行的平面为平面,所以直线即为直线,
由题易知,的补角,分别为,
设三棱柱的棱长为2,

最近更新