1 / 18
文档名称:

2023届黑龙江省哈九中高三适应性调研考试数学试题含解析.doc

格式:doc   大小:1,569KB   页数:18页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

2023届黑龙江省哈九中高三适应性调研考试数学试题含解析.doc

上传人:guwutang 2025/4/9 文件大小:1.53 MB

下载得到文件列表

2023届黑龙江省哈九中高三适应性调研考试数学试题含解析.doc

相关文档

文档介绍

文档介绍:该【2023届黑龙江省哈九中高三适应性调研考试数学试题含解析 】是由【guwutang】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2023届黑龙江省哈九中高三适应性调研考试数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知非零向量,满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:
2.若的内角满足,则的值为( )
A. B. C. D.
3.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为( )
A. B. C. D.
4.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于(  )
A. B. C.- D.-
5.已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )
A. B. C. D.
6.函数的图象为C,以下结论中正确的是( )
①图象C关于直线对称;
②图象C关于点对称;
③由y =2sin2x的图象向右平移个单位长度可以得到图象C.
A.① B.①② C.②③ D.①②③
7.已知集合A,则集合( )
A. B. C. D.
8.复数 (i为虚数单位)的共轭复数是
A.1+i B.1−i C.−1+i D.−1−i
9.已知函数,,,,则,,的大小关系为( )
A. B. C. D.
10.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( ).
A. B. C. D.
11.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,,我国数学家、天文学家明安图(1692年-1765年)为提高我,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )
A. B.
C. D.
12.的展开式中的系数是( )
A.160 B.240 C.280 D.320
二、填空题:本题共4小题,每小题5分,共20分。
13.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.
14.已知矩形 ABCD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为____________.
15.的展开式中常数项是___________.
16.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知是递增的等差数列,,是方程的根.
(1)求的通项公式;
(2)求数列的前项和.
18.(12分)已知函数.
(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;
(2)若对任意成立,求实数的取值范围.
19.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:
加工1个零件用时(分钟)
20
25
30
35
频数(个)
15
30
40
15
以加工这100个零件用时的频率代替概率.
(1)求的分布列与数学期望;
(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、.
20.(12分)对于正整数,如果个整数满足,
且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.
(Ⅰ)写出整数4的所有“正整数分拆”;
(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;
(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.
(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
21.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.
22.(10分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数有两个极值点,求证:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
根据向量的数量积运算,由向量的关系,可得选项.
【详解】

,∴等价于,
故选:C.
【点睛】
本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.
2、A
【解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.
【详解】
由题意,角满足,则,
又由角A是三角形的内角,所以,所以,
因为,
所以.
故选:A.
【点睛】
本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.
3、D
【解析】
根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率.
【详解】
由题意,,又,
∴,∴,
在中,
即,∴.
故选:D.
【点睛】
本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式.
4、A
【解析】
分析:计算,由z1,是实数得,从而得解.
详解:复数z1=3+4i,z2=a+i,
.
所以z1,是实数,
所以,即.
故选A.
点睛:本题主要考查了复数共轭的概念,属于基础题.
5、C
【解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.
【详解】
由双曲线,
则渐近线方程:,


连接,则,解得,
所以,解得.
故双曲线方程为.
故选:C
【点睛】
本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.
6、B
【解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.
【详解】
因为,
又,所以①正确.
,所以②正确.
将的图象向右平移个单位长度,得,所以③错误.
所以①②正确,③错误.
故选:B
【点睛】
本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.
7、A
【解析】
化简集合,,按交集定义,即可求解.
【详解】
集合,
,则.
故选:A.
【点睛】
本题考查集合间的运算,属于基础题.
8、B
【解析】
分析:化简已知复数z,由共轭复数的定义可得.
详解:化简可得z=
∴z的共轭复数为1﹣i.
故选B.
点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.
9、B
【解析】
可判断函数在上单调递增,且,所以.
【详解】
在上单调递增,且,
所以.
故选:B
【点睛】
本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.
10、C
【解析】
从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.
11、B
【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.
【详解】
由题意,执行给定的程序框图,输入,可得:
第1次循环:;
第2次循环:;
第3次循环:;
第10次循环:,
此时满足判定条件,输出结果,
故选:B.
【点睛】
本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
12、C
【解析】
首先把
看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.
【详解】
由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.
故选:C
【点睛】
本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、20
【解析】
由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.
【详解】
由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆
柱组合而成,其体积为.
故答案为:20.
【点睛】
本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.
14、2
【解析】
根据为焦点,得;又求得,从而得到离心率.
【详解】
为焦点
在双曲线上,则