文档介绍:该【2024届甘肃省古浪县第二中学数学高三上期末检测试题含解析 】是由【hezhihe】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【2024届甘肃省古浪县第二中学数学高三上期末检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2024届甘肃省古浪县第二中学数学高三上期末检测试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列的通项公式是,则( )
A.0 B.55 C.66 D.78
2.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )
A. B. C. D.
3.已知圆与抛物线的准线相切,则的值为()
A.1 B.2 C. D.4
4.已知函数,存在实数,使得,则的最大值为( )
A. B. C. D.
5.已知数列的前项和为,且,,,则的通项公式( )
A. B. C. D.
6.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )
A.58厘米 B.63厘米 C.69厘米 D.76厘米
7.在中,是的中点,,点在上且满足,则等于( )
A. B. C. D.
8.设,,,则,,三数的大小关系是
A. B.
C. D.
9.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )
A.3 B. C.4 D.
10.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )
A. B. C. D.
11.函数在上的图象大致为( )
A. B. C. D.
12.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,,则实数的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,则满足的的取值范围为_______.
14.已知函数有且只有一个零点,则实数的取值范围为__________.
15.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)
16.设,则除以的余数是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点满足.
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;
(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.
18.(12分)已知函数.
(1)求不等式的解集;
(2)若关于的不等式在区间内无解,求实数的取值范围.
19.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线
C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
20.(12分)为了加强环保知识的宣传,,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,,,每正确投放一张卡片得分,“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,,将他们的得分按照、、、、分组,绘成频率分布直方图如图:
(1)分别求出所抽取的人中得分落在组和内的人数;
(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.
21.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.
组别
频数
(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元
概率
现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:,若,则,,.
22.(10分)在四棱锥中,底面为直角梯形,,面.
(1)在线段上是否存在点,使面,说明理由;
(2)求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入
转化计算,再根据等差数列求和公式计算出结果.
【详解】
解:由题意得,当为奇数时,,
当为偶数时,
所以当为奇数时,;当为偶数时,,
所以
故选:D
【点睛】
此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.
2、D
【解析】
因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.
【详解】
因为双曲线分左右支,所以,
根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,
即,由得.
故选:.
【点睛】
本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.
3、B
【解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.
【详解】
请在此输入详解!
4、A
【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.
【详解】
由于,
,
由于,
令,,
在↗,↘
故.
故选:A
【点睛】
本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.
5、C
【解析】
利用证得数列为常数列,并由此求得的通项公式.
【详解】
由,得,可得().
相减得,则(),又
由,,得,所以,所以为常
数列,所以,故.
故选:C
【点睛】
本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.
6、B
【解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.
【详解】
因为弧长比较短的情况下分成6等分,
所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,
故导线长度约为63(厘米).
故选:B.
【点睛】
本题主要考查了扇形弧长的计算,属于容易题.
7、B
【解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.
【详解】
解:∵M是BC的中点,知AM是BC边上的中线,
又由点P在AM上且满足
∴P是三角形ABC的重心
∴
又∵AM=1
∴
∴
故选B.
【点睛】
判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.
8、C
【解析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.
【详解】
由,
,
,
.
【点睛】
本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.
9、B
【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.
【详解】
由题意可知:,
所以,,
所以,所以,
又因为,所以,
所以.
故选:B.
【点睛】
本题考查解三角形中的角度问题,、余弦定理是解答问题的关键.
10、A
【解析】
由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.
【详解】
水费开支占总开支的百分比为.
故选:A
【点睛】
本题考查折线图与柱形图,属于基础题.
11、C
【解析】
根据函数的奇偶性及函数在时的符号,即可求解.