1 / 20
文档名称:

北京市石景山区第九中学2022-2023学年高三第二次诊断性检测数学试卷含解析.doc

格式:doc   大小:1,694KB   页数:20页
该资料是网友上传,本站提供全文预览,预览什么样,下载就什么样,请放心下载。
点击预览全文
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

北京市石景山区第九中学2022-2023学年高三第二次诊断性检测数学试卷含解析.doc

上传人:zhimenshu 2025/4/9 文件大小:1.65 MB

下载得到文件列表

北京市石景山区第九中学2022-2023学年高三第二次诊断性检测数学试卷含解析.doc

相关文档

文档介绍

文档介绍:该【北京市石景山区第九中学2022-2023学年高三第二次诊断性检测数学试卷含解析 】是由【zhimenshu】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【北京市石景山区第九中学2022-2023学年高三第二次诊断性检测数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中,,,分别为角,,的对边,若的面为,且,则(  )
A.1 B. C. D.
2.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(       )
A. B. C. D.
3.已知等比数列的各项均为正数,设其前n项和,若(),则( )
A.30 B. C. D.62
4.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于(  )
A. B.8 C. D.4
5.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为( )
A. B. C. D.
6.已知实数集,集合,集合,则( )
A. B. C. D.
7.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )
A.2k B.4k C.4 D.2
8.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )
A.在点F的运动过程中,存在EF//BC1
B.在点M的运动过程中,不存在B1M⊥AE
C.四面体EMAC的体积为定值
D.四面体FA1C1B的体积不为定值
9.若为虚数单位,则复数,则在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为( )
A. B. C. D.
11.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为(  )
A.300, B.300, C.60, D.60,
12.已知,,,则的最小值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.展开式中项系数为160,则的值为______.
14.设全集,集合,,则集合______.
15.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.
16.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
18.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.
(1)求的直角坐标方程与点的直角坐标;
(2)求证:.
19.(12分)已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,,的面积为S.
(1)将l表示成θ的函数,并确定θ的取值范围;
(2)求l的最小值及此时的值;
(3)问当θ为何值时,的面积S取得最小值?并求出这个最小值.
20.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.
(1)求数列的通项公式;
(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.
21.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.
(1)求曲线的直角坐标方程和的方程化为极坐标方程;
(2)设与,轴交于,两点,,交于,两点,求,两点间的距离.
22.(10分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.
【详解】
解:由,
得,
∵ ,
∴ ,

即,
则,
∵ ,
∴ ,
∴ ,即,
则,
故选D.
【点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
2、A
【解析】
=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)=则,,即.
3、B
【解析】
根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.
【详解】
设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,
因此.
故选:B
【点睛】
本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.
4、C
【解析】
将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.
【详解】
F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,
设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.
由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,
∴||FA|﹣|FB||=|x1﹣x2|=.
故选C.
【点睛】
本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.
5、C
【解析】
根据程序框图依次计算得到答案.
【详解】
,;,;,;
,;,此时不满足,跳出循环,
输出结果为,由题意,得.
故选:
【点睛】
本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.
6、A
【解析】
可得集合,求出补集,再求出即可.
【详解】
由,得,即,
所以,
所以.
故选:A
【点睛】
本题考查了集合的补集和交集的混合运算,属于基础题.
7、D
【解析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.
【详解】
当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.
故选:D
【点睛】
.
8、C
【解析】
采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.
【详解】
A错误
由平面,//
而与平面相交,
故可知与平面相交,所以不存在EF//BC1
B错误,如图,作

又平面,所以平面
又平面,所以
由//,所以
,平面
所以平面,又平面
所以,所以存在
C正确
四面体EMAC的体积为
其中为点到平面的距离,
由//,平面,平面
所以//平面,
则点到平面的距离即点到平面的距离,
所以为定值,故四面体EMAC的体积为定值
错误
由//,平面,平面
所以//平面,
则点到平面的距离即为点到平面的距离,
所以为定值
所以四面体FA1C1B的体积为定值
故选:C
【点睛】
本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.
9、B
【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.
【详解】


则在复平面内对应的点的坐标为,位于第二象限.
故选:B
【点睛】
本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.
10、B
【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.
【详解】
由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,