文档介绍:该【北京理工大附中2022-2023学年高考仿真卷数学试题含解析 】是由【zhimenshu】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【北京理工大附中2022-2023学年高考仿真卷数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数的定义域为,则函数的定义域为( )
A. B.
C. D.
2.已知不等式组表示的平面区域的面积为9,若点, 则的最大值为( )
A.3 B.6 C.9 D.12
3.函数(其中是自然对数的底数)的大致图像为( )
A. B. C. D.
4.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为( )
A. B. C. D.
5.设集合(为实数集),,,则( )
A. B. C. D.
6.已知,,若,则实数的值是( )
A.-1 B.7 C.1 D.1或7
7.复数的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.若,满足约束条件,则的最大值是( )
A. B. C.13 D.
9.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.已知集合,则( )
A. B.
C. D.
11.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )
A. B. C. D.
12.等比数列的各项均为正数,且,则( )
A.12 B.10 C.8 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知为等差数列,为其前n项和,若,,则_______.
14.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.
15.在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_______.
16.已知集合,则____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)2019年6月,,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:
用户分类
预计升级到的时段
人数
早期体验用户
2019年8月至2019年12月
270人
中期跟随用户
2020年1月至2021年12月
530人
后期用户
2022年1月及以后
200人
我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).
(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;
(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;
(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
18.(12分)随着现代社会的发展,我国对于环境保护越来越重视,,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,(
以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.
(1)当时,求某个时间段需要检查污染源处理系统的概率;
(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.
19.(12分)已知函数(,)满足下列3个条件中的2个条件:
①函数的周期为;
②是函数的对称轴;
③且在区间上单调.
(Ⅰ)请指出这二个条件,并求出函数的解析式;
(Ⅱ)若,求函数的值域.
20.(12分)已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取值范围.
21.(12分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosBb+cosCc=23sinA3sinC.
(1)求b的值;
(2)若cosB+3sinB=2,求a+c的取值范围.
22.(10分)已知曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求曲线的直角坐标方程与直线的普通方程;
(2)已知点,直线与曲线交于、两点,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
试题分析:由题意,得,解得,故选A.
考点:函数的定义域.
2、C
【解析】
分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.
详解:作出不等式组对应的平面区域如图所示:
则,所以平面区域的面积,
解得,此时,
由图可得当过点时,取得最大值9,故选C.
点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.
3、D
【解析】
由题意得,函数点定义域为且,所以定义域关于原点对称,
且,所以函数为奇函数,图象关于原点对称,
故选D.
4、D
【解析】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.
【详解】
连接,,因为,所以为异面直线与所成的角(或补角),
不妨设正方体的棱长为2,则,,
在等腰中,取的中点为,连接,
则,,
所以,
即:,
所以异面直线,所成角的余弦值为.
故选:D.
【点睛】
本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.
5、A
【解析】
根据集合交集与补集运算,即可求得.
【详解】
集合,,
所以
所以
故选:A
【点睛】
本题考查了集合交集与补集的混合运算,属于基础题.
6、C
【解析】
根据平面向量数量积的坐标运算,化简即可求得的值.
【详解】
由平面向量数量积的坐标运算,代入化简可得
.
∴解得.
故选:C.
【点睛】
本题考查了平面向量数量积的坐标运算,属于基础题.
7、C
【解析】
所对应的点为(-1,-2)位于第三象限.
【考点定位】本题只考查了复平面的概念,属于简单题.
8、C
【解析】
由已知画出可行域,利用目标函数的几何意义求最大值.
【详解】
解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即
点到坐标原点的距离最大,即.
故选:.
【点睛】
本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.
9、D
【解析】
设,整理得到方程组,解方程组即可解决问题.
【详解】
设,
因为,所以,
所以,解得:,
所以复数在复平面内对应的点为,此点位于第四象限.
故选D
【点睛】
本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.
10、B
【解析】
先由得或,再计算即可.
【详解】
由得或,
,,
又,.
故选:B
【点睛】
本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.
11、A
【解析】
可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可
【详解】
可求得直线关于直线的对称直线为,
当时,,,当时,,则当时,,单减,当时,,单增;
当时,,,当,,当时,单减,当时,单增;
根据题意画出函数大致图像,如图:
当与()相切时,得,解得;
当与()相切时,满足,
解得,结合图像可知,即,
故选:A
【点睛】
本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题
12、B
【解析】
由等比数列的性质求得,再由对数运算法则可得结论.
【详解】
∵数列是等比数列,∴,,
∴.
故选:B.
【点睛】
本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【解析】
试题分析:因为是等差数列,所以,即,又,所以,
所以.故答案为1.