1 / 20
文档名称:

吉林省延边朝鲜族自治州延吉二中2023届高三下学期联考数学试题含解析.doc

格式:doc   大小:1,906KB   页数:20页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

吉林省延边朝鲜族自治州延吉二中2023届高三下学期联考数学试题含解析.doc

上传人:zhimenshu 2025/4/9 文件大小:1.86 MB

下载得到文件列表

吉林省延边朝鲜族自治州延吉二中2023届高三下学期联考数学试题含解析.doc

相关文档

文档介绍

文档介绍:该【吉林省延边朝鲜族自治州延吉二中2023届高三下学期联考数学试题含解析 】是由【zhimenshu】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【吉林省延边朝鲜族自治州延吉二中2023届高三下学期联考数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )
A. B. C. D.
2.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为( )
A.3 B.4 C.5 D.6
3.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是( )
A., B.,
C., D.,
4.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )
A. B.4 C.2 D.
5.已知直线:与椭圆交于、两点,与圆:交于、,使得,则椭圆的离心率的取值范围为( )
A. B. C. D.
6.如图是一个算法流程图,则输出的结果是(  )
A. B. C. D.
7.在中,,,分别为角,,的对边,若的面为,且,则(  )
A.1 B. C. D.
8.已知函数,,若方程恰有三个不相等的实根,则的取值范围为( )
A. B.
C. D.
9.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )
A.18种 B.36种 C.54种 D.72种
10.小王因上班繁忙,来不及做午饭,:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( )
A. B. C. D.
11.是平面上的一定点,是平面上不共线的三点,动点满足 ,,则动点的轨迹一定经过的( )
A.重心 B.垂心 C.外心 D.内心
12.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.数列满足,则,∈N*使得成立,则实数λ的最小值为______
14.如图所示,在边长为4的正方形纸片中,,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.
15.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,,则双曲线的离心率为_________.
16.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数有两个极值点,求证:.
18.(12分)已知.
(Ⅰ) 若,求不等式的解集;
(Ⅱ),,,求实数的取值范围.
19.(12分)已知.
(Ⅰ)当时,解不等式;
(Ⅱ)若的最小值为1,求的最小值.
20.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=4asinθ (a>0),直线l的参数方程为x=-2+22t,y=-1+22t(t为参数).直线l与曲线C交于M,N两点.
(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);
(II)设P(-2,-1),若|PM|,|MN|,|PN|成等比数列,求a的值.
21.(12分)已知函数.
(1)求的极值;
(2)若,且,证明:.
22.(10分)设函数.
(1)若函数在是单调递减的函数,求实数的取值范围;
(2)若,证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.
【详解】
解:分析题意可知,如下图所示,
该几何体为一个正方体中的三棱锥,
最大面的表面边长为的等边三角形,
故其面积为,
故选B.
【点睛】
本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.
2、A
【解析】
根据定义,.
【详解】
由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,
则,
因为,
当的值可以为;
即有3个这种超级斐波那契数列,
故选:A.
【点睛】
本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.
3、D
【解析】
根据指数函数的图象和特征以及图象的平移可得正确的选项.
【详解】
从题设中提供的图像可以看出,
故得,
故选:D.
【点睛】
本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.
4、B
【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.
【详解】
解:抛物线焦点,准线,
过作交于点,连接
由抛物线定义,

当且仅当三点共线时,取“=”号,
∴的最小值为.
故选:B.
【点睛】
本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.
5、A
【解析】
由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.
【详解】
设,且线过定点即为的圆心,
因为,所以,
又因为,所以,
所以,所以,
所以,所以,所以,
所以.
故选:A.
【点睛】
本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,“设而不求”的目的,大大简化运算.
6、A
【解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.
【详解】
由题意,执行上述的程序框图:
第1次循环:满足判断条件,;
第2次循环:满足判断条件,;
第3次循环:满足判断条件,;
不满足判断条件,输出计算结果,
故选A.
【点睛】
本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.
7、D
【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.
【详解】
解:由,
得,
∵ ,
∴ ,

即,
则,
∵ ,
∴ ,
∴ ,即,
则,
故选D.
【点睛】
本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.
8、B
【解析】
由题意可将方程转化为
,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.
【详解】
由题意知方程在上恰有三个不相等的实根,
即,①.
因为,①式两边同除以,得.
所以方程有三个不等的正实根.
记,,则上述方程转化为.
即,所以或.
因为,当时,,所以在,上单调递增,且时,.
当时,,在上单调递减,且时,.
所以当时,取最大值,当,有一根.
所以恰有两个不相等的实根,所以.
故选:B.
【点睛】
本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.
9、B
【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.
【详解】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,
则不同的分配方案有种.
故选:.
【点睛】
本题考查排列组合,属于基础题.
10、C
【解析】
设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.
【详解】
设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,
所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:
.
故选:C
【点睛】
本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.
11、B
【解析】
解出