文档介绍:该【安徽省”皖南八校“联盟2023年高考临考冲刺数学试卷含解析 】是由【zhimenshu】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【安徽省”皖南八校“联盟2023年高考临考冲刺数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于函数,下列说法正确的是( )
A.函数的定义域为
B.函数一个递增区间为
C.函数的图像关于直线对称
D.将函数图像向左平移个单位可得函数的图像
2.在中,,则 ( )
A. B. C. D.
3.如图所示,三国时代数学家在《周脾算经》中利用弦图,(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )
A.20 B.27 C.54 D.64
4.设,若函数在区间上有三个零点,则实数的取值范围是( )
A. B. C. D.
5.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,
,那么( )
A. B. C. D.
6.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
7.设是两条不同的直线,是两个不同的平面,则下列命题正确的是( )
A.若,,则 B.若,,则
C.若,,,则 D.若,,,则
8.已知函数,则( )
A.2 B.3 C.4 D.5
9.执行如图所示的程序框图,若输入的,则输出的( )
A.9 B.31 C.15 D.63
10.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为( )
A. B. C. D.
11.已知平行于轴的直线分别交曲线于两点,则的最小值为( )
A. B. C. D.
12.用电脑每次可以从区间内自动生成一个实数,,则这3个实数都小于
的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若恒成立,则的取值范围是___________.
14.的展开式中,的系数是__________. (用数字填写答案)
15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)
16.三棱柱中, ,侧棱底面,,则球的表面积的最小值为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.
(1)求抛物线的方程;
(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.
18.(12分)已知函数(),不等式的解集为.
(1)求的值;
(2)若,,,且,求的最大值.
19.(12分)如图,在四边形中,,,.
(1)求的长;
(2)若的面积为6,求的值.
20.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.
(1)求抛物线的方程;
(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.
21.(12分)如图,三棱锥中,
(1)证明:面面;
(2)求二面角的余弦值.
22.(10分)已知等差数列中,,数列的前项和.
(1)求;
(2)若,求的前项和.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.
【详解】
,
故函数的定义域为,故错误;
当时,,函数单调递增,故正确;
当,关于的对称的直线为不在定义域内,故错误.
平移得到的函数定义域为,故不可能为,错误.
故选:.
【点睛】
本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.
2、A
【解析】
先根据得到为的重心,从而,故可得,利用可得,故可计算的值.
【详解】
因为所以为的重心,
所以,
所以,
所以,因为,
所以,故选A.
【点睛】
对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.
3、B
【解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。
【详解】
设大正方体的边长为,则小正方体的边长为,
设落在小正方形内的米粒数大约为,
则,解得:
故选:B
【点睛】
本题主要考查了概率模拟的应用,考查计算能力,属于基础题。
4、D
【解析】
令,可得.
在坐标系内画出函数的图象(如图所示).
当时,.由得.
设过原点的直线与函数的图象切于点,
则有,解得.
所以当直线与函数的图象切时.
又当直线经过点时,有,解得.
结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.
即函数在区间上有三个零点时,.
点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.
5、D
【解析】
由得,分别算出和的值,从而得到的值.
【详解】
∵,
∴,
∴,
当时,,∴,
当时,,∴,
∴,
故选:D.
【点睛】
本小题主要考查对数运算,属于基础题.
6、C
【解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
【点睛】
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
7、C
【解析】
根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.
【详解】
对于,当为内与垂直的直线时,不满足,错误;
对于,设,则当为内与平行的直线时,,但,错误;
对于,由,知:,又,,正确;
对于,设,则当为内与平行的直线时,,错误.
故选:.
【点睛】
本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.
8、A
【解析】
根据分段函数直接计算得到答案.
【详解】
因为所以.
故选:.
【点睛】
本题考查了分段函数计算,意在考查学生的计算能力.
9、B
【解析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.
【详解】
执行程序框;;;
;;,
满足,退出循环,因此输出,
故选:B.
【点睛】
本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.
10、B
【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.