文档介绍:该【江苏省苏州市吴江汾湖中学2023届高考全国统考预测密卷数学试卷含解析 】是由【rongfunian】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【江苏省苏州市吴江汾湖中学2023届高考全国统考预测密卷数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数的图像向左平移个单位得到函数的图像,则的最小值为( )
A. B. C. D.
2.,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:
则下列结论正确的是( ).
A.与2016年相比,2019年不上线的人数有所增加
B.与2016年相比,2019年一本达线人数减少
C.与2016年相比,
D.2016年与2019年艺体达线人数相同
3.已知为实数集,,,则( )
A. B. C. D.
4.已知,,则的大小关系为( )
A. B. C. D.
5.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )
A.各月最高气温平均值与最低气温平均值总体呈正相关
B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大
C.全年中各月最低气温平均值不高于10°C的月份有5个
D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势
6.设为的两个零点,且的最小值为1,则( )
A. B. C. D.
7.已知集合A,B=,则A∩B=
A. B. C. D.
8.已知三棱锥且平面,其外接球体积为( )
A. B. C. D.
9.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分不必要条件
10.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )
A. B. C. D.
11.设、分别是定义在上的奇函数和偶函数,且,则( )
A. B.0 C.1 D.3
12.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.
14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.
15.已知,,是平面向量,,,且,则的取值范围是________.
16.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数z=3x-y的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.
(1)若,且恰为的左焦点,求的两条渐近线的方程;
(2)若,且,求实数的值;
(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.
18.(12分)设函数f(x)=x2−4xsinx−4cosx.
(1)讨论函数f(x)在[−π,π]上的单调性;
(2)证明:函数f(x)在R上有且仅有两个零点.
19.(12分)已知函数.
(1)讨论函数单调性;
(2)当时,求证:.
20.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
21.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为.
(1)若,写出经过变换后得到的数阵;
(2)若,,求的值;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.
22.(10分)已知函数.
(1)时,求不等式解集;
(2)若的解集包含于,求a的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.
【详解】
将函数的图象向左平移个单位,
得到,
此时与函数的图象重合,
则,即,,
当时,取得最小值为,
故选:.
【点睛】
本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.
2、A
【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.
【详解】
设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,
2019年不上线人数为,故A正确;
2016年高考一本人数,2019年高考一本人数,故B错误;
2019年二本达线人数,2016年二本达线人数,增加了
倍,故C错误;
2016年艺体达线人数,2019年艺体达线人数,故D错误.
故选:A.
【点睛】
本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.
3、C
【解析】
求出集合,,,由此能求出.
【详解】
为实数集,,,
或,
.
故选:.
【点睛】
本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题.
4、D
【解析】
由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.
【详解】
根据指数函数的图像与性质可知,
由对数函数的图像与性质可知,,所以最小;
而由对数换底公式化简可得
由基本不等式可知,代入上式可得
所以,
综上可知,
故选:D.
【点睛】
本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.
5、D
【解析】
根据折线图依次判断每个选项得到答案.
【详解】
由绘制出的折线图知:
在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;
在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;
在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;
在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.
故选:D.
【点睛】
本题考查了折线图,意在考查学生的理解能力.
6、A
【解析】
先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.
【详解】
由题得,
设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,
∴=1,解得T=2;
∴=2,
解得ω=π.
故选A.
【点睛】
本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.
7、A
【解析】
先解A、B集合,再取交集。
【详解】
,所以B集合与A集合的交集为,故选A
【点睛】
一般地,把不等式组放在数轴中得出解集。
8、A
【解析】
由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.
【详解】
由题,因为,所以,
设,则由,可得,解得,
可将三棱锥还原成如图所示的长方体,
则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,
所以外接球的体积.
故选:A
【点睛】
本题考查三棱锥的外接球体积,考查空间想象能力.
9、A
【解析】
试题分析:α⊥β, b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.
考点:充分条件、必要条件.
10、C
【解析】
由题意可得面,可知,因为,则面,,进而算出,外接球半径为1,得出结果.
【详解】
解:由,翻折后得到,又,
则面,可知.
又因为,则面,于是,
因此三棱锥外接球球心是的中点.
计算可知,则外接球半径为1,从而外接球表面积为.
故选:C.
【点睛】
本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.
11、C
【解析】
先根据奇偶性,求出的解析式,令,即可求出。
【详解】
因为、分别是定义在上的奇函数和偶函数,,用替换,得 ,
化简得,即
令,所以,故选C。
【点睛】
本题主要考查函数性质奇偶性的应用。
12、B
【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.
【详解】
抛物线的焦点为,
则,即,
设点的坐标为,点的坐标为,
如图: