文档介绍:该【江西省赣州市于都县二中2023年高考考前提分数学仿真卷含解析 】是由【xinyala】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【江西省赣州市于都县二中2023年高考考前提分数学仿真卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数在复平面内对应的点为则( )
A. B. C. D.
2.在区间上随机取一个数,使直线与圆相交的概率为( )
A. B. C. D.
3.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )
A. B. C. D.
4.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )
A. B. C. D.
5.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.
A. B. C. D.
6.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )
A. B. C. D.
7.若实数、满足,则的最小值是( )
A. B. C. D.
8.一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )
A. B. C. D.
9.设,则关于的方程所表示的曲线是( )
A.长轴在轴上的椭圆 B.长轴在轴上的椭圆
C.实轴在轴上的双曲线 D.实轴在轴上的双曲线
10.已知函数的图像的一条对称轴为直线,且,则的最小值为( )
A. B.0 C. D.
11.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( )
A. B. C. D.
12.已知纯虚数满足,其中为虚数单位,则实数等于( )
A. B.1 C. D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在处的切线的斜率为________.
14.已知数列与均为等差数列(),且,则______.
15.实数满足,则的最大值为_____.
16.某公司生产甲、、原料2千克;生产乙产品1桶需耗原料2千克,,,,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)若,求证:.
(2)讨论函数的极值;
(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.
18.(12分)已知函数的导函数的两个零点为和.
(1)求的单调区间;
(2)若的极小值为,求在区间上的最大值.
19.(12分)如图,在四棱锥中,平面, 底面是矩形,,,分别是,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设, 求三棱锥的体积.
20.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.
(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;
(2)若公差为的等差数列为“数列”,求的取值范围;
(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.
21.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.
(Ⅰ)求椭圆与椭圆的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.
22.(10分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥.
(1)判别与平面的位置关系,并给出证明;
(2)求多面体的体积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
求得复数,结合复数除法运算,求得的值.
【详解】
易知,则.
故选:B
【点睛】
本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.
2、C
【解析】
根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.
【详解】
因为圆心,半径,直线与圆相交,所以
,解得
所以相交的概率,故选C.
【点睛】
本题主要考查了直线与圆的位置关系,几何概型,属于中档题.
3、B
【解析】
根据空余部分体积相等列出等式即可求解.
【详解】
在图1中,液面以上空余部分的体积为;在图2中,,所以.
故选:B
【点睛】
本题考查圆柱的体积,属于基础题.
4、A
【解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.
【详解】
解:设,∴,
又,两式相减得:,
∴,
∴,
∴直线的斜率为2,又∴过点,
∴直线的方程为:,即,
故选:A.
【点睛】
本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.
5、B
【解析】
如图,已知,, 
∴,解得 ,
∴,解得 .
∴
故选B.
6、B
【解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.
【详解】
解:函数,,
为的零点,为图象的对称轴,
,且,、,,即为奇数①.
在,单调,,②.
由①②可得的最大值为1.
当时,由为图象的对称轴,可得,,
故有,,满足为的零点,
同时也满足满足在上单调,
故为的最大值,
故选:B.
【点睛】
本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.
7、D
【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案
【详解】
作出不等式组所表示的可行域如下图所示:
联立,得,可得点,
由得,平移直线,
当该直线经过可行域的顶点时,该直线在轴上的截距最小,
此时取最小值,即.
故选:D.
【点睛】
本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.
8、B
【解析】
计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.
【详解】
由题意可知,样本在的数据个数为,
样本在的数据个数为,
因此,样本在、内的数据个数为.
故选:B.
【点睛】
本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.
9、C
【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.
【详解】
解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.
【点睛】
本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.
10、D
【解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.
【详解】
由题意,函数为辅助角,
由于函数的对称轴的方程为,且,
即,解得,所以,
又由,所以函数必须取得最大值和最小值,
所以可设,,
所以,
当时,的最小值,故选D.
【点睛】
本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
11、D
【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.
【详解】
甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,
其中甲第一个到、丙第三个到有甲乙丙,共1种,
所以甲第一个到、丙第三个到的概率是.
故选:D
【点睛】
本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.
12、B
【解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.
【详解】
因为,所以,
又因为是纯虚数,所以,所以.
故选:B.
【点睛】
本题考查复数的除法运算以及根据复数是纯虚数求解参数值,,则有.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
求出函数的导数,利用导数的几何意义令