1 / 21
文档名称:

广东省广州荔湾区广雅中学2024年高考数学二模试卷含解析.doc

格式:doc   大小:2,319KB   页数:21页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

广东省广州荔湾区广雅中学2024年高考数学二模试卷含解析.doc

上传人:286919636 2025/4/10 文件大小:2.26 MB

下载得到文件列表

广东省广州荔湾区广雅中学2024年高考数学二模试卷含解析.doc

文档介绍

文档介绍:该【广东省广州荔湾区广雅中学2024年高考数学二模试卷含解析 】是由【286919636】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【广东省广州荔湾区广雅中学2024年高考数学二模试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2024年高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过抛物线的焦点且与的对称轴垂直的直线与交于,两点,,为的准线上的一点,则的面积为( )
A.1 B.2 C.4 D.8
2.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
3.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=(  ).
A. B. C. D.5
4.展开项中的常数项为
A.1 B.11 C.-19 D.51
5.已知复数,若,则的值为( )
A.1 B. C. D.
6.等比数列的前项和为,若,,,,则( )
A. B. C. D.
7.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )
A. B. C. D.
8.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为( ).
A. B. C. D.
9.已知复数为虚数单位) ,则z 的虚部为( )
A.2 B. C.4 D.
10.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( )
A.1 B.2 C.3 D.4
11.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,,求三角形面积,即. 若的面积,,,则等于( )
A. B. C.或 D.或
12.已知等比数列的各项均为正数,设其前n项和,若(),则( )
A.30 B. C. D.62
二、填空题:本题共4小题,每小题5分,共20分。
13.在三棱锥中,,,两两垂直且,点为的外接球上任意一点,则
的最大值为______.
14.已知随机变量服从正态分布,若,则_________.
15.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.
16.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)求函数的极值;
(2)当时,求证:.
18.(12分)已知函数,曲线在点处的切线在y轴上的截距为.
(1)求a;
(2)讨论函数和的单调性;
(3)设,求证:.
19.(12分)在平面直角坐标系中,,,且满足
(1)求点的轨迹的方程;
(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.
20.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.
(Ⅰ)求证:;
(Ⅱ)求证:四边形是平行四边形;
(Ⅲ)若,试判断二面角的大小能否为?说明理由.
21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出的普通方程和的直角坐标方程;
(2)设点在上,点在上,求的最小值以及此时的直角坐标.
22.(10分)已知函数
(1)若,求证:
(2)若,恒有,求实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
设抛物线的解析式,得焦点为,对称轴为轴,准线为,这样可设点坐标为,代入抛物线方程可求得,而到直线的距离为,从而可求得三角形面积.
【详解】
设抛物线的解析式,
则焦点为,对称轴为轴,准线为,
∵ 直线经过抛物线的焦点,,是与的交点,
又轴,∴可设点坐标为,
代入,解得,
又∵点在准线上,设过点的的垂线与交于点,,
∴.
故应选C.
【点睛】
本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出点坐标,从而求得参数的值.本题难度一般.
2、C
【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,

又当时,令,则,即,

综上所述,的取值范围为.
故选C.
【点睛】
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
3、C
【解析】
试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1
所以|a+bi|=,选C
考点:复数的代数运算,复数相等的充要条件,复数的模
4、B
【解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.
【详解】
展开式中的项为常数项,有3种情况:
(1)5个括号都出1,即;
(2)两个括号出,两个括号出,一个括号出1,即;
(3)一个括号出,一个括号出,三个括号出1,即;
所以展开项中的常数项为,故选B.
【点睛】
本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.
5、D
【解析】
由复数模的定义可得:,求解关于实数的方程可得:.
本题选择D选项.
6、D
【解析】
试题分析:由于在等比数列中,由可得:,
又因为,
所以有:是方程的二实根,又,,所以,
故解得:,从而公比;
那么,
故选D.
考点:等比数列.
7、D
【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:本题主要考查三视图及几何体体积的计算.
8、C
【解析】
设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.
【详解】
根据题意画出图形:
设M,N,P分别为和的中点,
则的夹角为MN和NP夹角或其补角
可知,.
作BC中点Q,则为直角三角形;
中,由余弦定理得

在中,
在中,由余弦定理得
所以
故选:C
【点睛】
此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.
9、A
【解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.
【详解】
因为,所以z 的虚部为2.
【点睛】
本题考查复数的四则运算及虚部的概念,计算过程要注意.
10、B
【解析】
设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.
【详解】
解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;
对于②,连结,,在中,,而,是的中点,所以,②正确;
对于③由②可知,在中,,连结,易知,而在中,,,
即,又,面,平面平面,③正确;
以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;
, ,, , , ;
, ;
异面直线与所成角为,,故.④不正确.
故选:.
【点睛】
本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.
11、C
【解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.
【详解】
已知,,,
代入,
得,
即 ,
解得,
当时,由余弦弦定理得: ,.
当时,由余弦弦定理得: , .
故选:C

最近更新

家家宜:三、四级城市经销商管理及市场推广 4页

2025年中国外墙外保温系统产业发展前景及供需.. 24页

湖北省安陆市2015-2016学年七年级历史下册期中.. 8页

九年级化学上册第一次月考调研检测试题1 6页

初三学生个人自我评价(5篇) 7页

团委发文制度 3页

2025年中国合成樟脑项目创业计划书 20页

策划流程精简说明 7页

2025年中国医用止血海绵行业市场前景预测及投.. 23页

2025年中国力与变形检测仪市场运行格局及投资.. 18页

吉林石化公司规章制度管理细则 5页

财务管理制度设计调查清单 3页

清朝的制度与政策同步练习2 4页

天津挂月酿酒公司酒厂整体搬迁项目可行性报告.. 53页

医师定期考核管理办法试题与答案 4页

2016届九年级语文下册课时训练题28 11页

2025年中国IC卡市场调查与市场分析预测报告 21页

精细化管理稿件 8页

企业各部门的绩效考核指标分别是什么 4页

煤矿机电职工年度培训计划 6页

八年级英语Body-and-Feelings同步练习 4页

一级预算具体内容及考核要求课件 9页

2025年Β-羟基烷酸PHAS行业分析报告及未来五至.. 22页

精读三unit9词汇 24页

2025年PES项目可行性研究报告及运营方案 24页

2025年LCD-ITO导电玻璃市场规模分析 23页

评标专家库系统系统总体建设方案 38页

企业文化建设常见的六个误区 2页

轧钢厂利用ABC改善成本管理 7页

2025-智慧医院信息共享平台总体建设方案V2-1 22页