文档介绍:该【贵州省荔波高级中学2023年高三冲刺模拟数学试卷含解析 】是由【1875892****】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【贵州省荔波高级中学2023年高三冲刺模拟数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )
A. B. C. D.
2.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是( )
A. B. C. D.
3.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为( )
A. B. C. D.
4.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )
A. B.
C. D.
5.已知 若在定义域上恒成立,则的取值范围是( )
A. B. C. D.
6.在中,,,,若,则实数( )
A. B. C. D.
7.已知,则下列说法中正确的是( )
A.是假命题 B.是真命题
C.是真命题 D.是假命题
8.已知,则下列不等式正确的是( )
A. B.
C. D.
9.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )
A. B. C. D.
10.执行如图所示的程序框图,输出的结果为( )
A. B. C. D.
11.已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )
A.10 B.32 C.40 D.80
12.若的展开式中的系数为150,则( )
A.20 B.15 C.10 D.25
二、填空题:本题共4小题,每小题5分,共20分。
13.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.
14.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_____.
15.已知向量,满足,,,则向量在的夹角为______.
16.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点.
(1)求证:平面;
(2)若,求二面角的余弦值大小.
18.(12分)已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求直线的直角坐标方程与曲线的普通方程;
(Ⅱ)已知点设直线与曲线相交于两点,求的值.
20.(12分)的内角的对边分别为,已知.
(1)求的大小;
(2)若,求面积的最大值.
21.(12分)已知椭圆的短轴长为,离心率,其右焦点为.
(1)求椭圆的方程;
(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.
22.(10分)己知,函数.
(1)若,解不等式;
(2)若函数,且存在使得成立,求实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.
【详解】
由题可知原式为,该复数为纯虚数,
所以.
故选:A
【点睛】
本题考查复数的运算和复数的分类,属基础题.
2、C
【解析】
设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.
【详解】
设直线的方程为:, ,,,,
联立方程,消去得:,
△,
,
且,,
,
线段的中点为,,
,,
,,
,
,
把 代入,得,
,
,
故选:
【点睛】
本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.
3、C
【解析】
利用三角形
与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。
【详解】
设,,
由,与相似,
所以,即,
又因为,
所以,,
所以,即,,
所以双曲线C的渐近线方程为.
故选:C.
【点睛】
本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。
4、A
【解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.
【详解】
椭圆的离心率:,( c为半焦距; a为长半轴),
设卫星近地点,远地点离地面距离分别为r,n,如图:
则
所以,,
故选:A
【点睛】
本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.
5、C
【解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.
【详解】
,先解不等式.
①当时,由,得,解得,此时;
②当时,由,得.
所以,不等式的解集为.
下面来求函数的值域.
当时,,则,此时;
当时,,此时.
综上所述,函数的值域为,
由于在定义域上恒成立,
则不等式在定义域上恒成立,所以,,解得.
因此,实数的取值范围是.
故选:C.
【点睛】
本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.
6、D
【解析】
将、用、表示,再代入中计算即可.
【详解】
由,知为的重心,
所以,又,
所以,
,所以,.
故选:D
【点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.
7、D
【解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.
【详解】
当时,故命题为假命题;
记f(x)=ex﹣x的导数为f′(x)=ex,
易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,
∴f(x)>f(0)=1>0,即,故命题为真命题;
∴是假命题
故选D
【点睛】
本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.
8、D
【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.
【详解】
已知,赋值法讨论的情况:
(1)当时,令,,则,,排除B、C选项;
(2)当时,令,,则,排除A选项.
故选:D.
【点睛】
比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.
9、B
【解析】
由,则输出为300,即可得出判断框的答案
【详解】
由,则输出的值为300,,故判断框中应填?
故选:.
【点睛】
本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.
10、D
【解析】
由程序框图确定程序功能后可得出结论.
【详解】
执行该程序可得.
故选:D.
【点睛】
本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.
11、D
【解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.
【详解】
由题可知:
当时,常数项为
又展开式的二项式系数和为
由
所以
当时,
所以项系数为
故选:D
【点睛】
本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.
12、C
【解析】
通过二项式展开式的通项分析得到,即得解.
【详解】
由已知得,
故当时,,
于是有,
则.
故选:C
【点睛】
本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
利用