文档介绍:该【人教版专题42:第8章几何中的最值问题之和长度有关的最值之多线段的最值-备战2021中考数学解题方法系统训练(全国通用)(解析版) 】是由【1905133****】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【人教版专题42:第8章几何中的最值问题之和长度有关的最值之多线段的最值-备战2021中考数学解题方法系统训练(全国通用)(解析版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。42第8章几何中的最值问题之和长度有关的最值之多线段的最值
一、单选题
1.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=4,P是AC上一动点,则PB+PE的最小值是( )
A.6 B.2 C.8 D.2
【答案】D
【分析】由正方形的性质得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,
∵四边形ABCD是正方形,
∴B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE=DE.
∵BE=2,AE=4,
∴AD=AB=6,
∴DE==2,
故PB+PE的最小值是2.
故选:D.
【点评】本题考查轴对称—最短路线问题,其中涉及正方形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键
2.如图,正方形 中,, 是 的中点,点 是对角线 上一动点,则 的最小值为( )
A.4 B. C. D.
【答案】B
【分析】由正方形的中心对称性质,可得 的最小值即是DE的值,再由勾股定理解题计算即可.
【解答】连接DE,交AC于点P,连接BD,
点B与点D关于AC对称,
的长即为的最小值,
是BC的中点,
,
在中,
的最小值是.
故选:B.
【点评】本题考查两点对称的性质、两点间的距离、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.
3.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点,且BE=CF,连接BF、DE,则BF+DE的最小值为()
A. B. C. D.
【答案】D
【分析】连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.
【解答】解:解:连接AE,如图1,
∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
又BE=CF,
∴△ABE≌△BCF(SAS).
∴AE=BF.
所以BF+DE最小值等于AE+DE最小值.
作点A关于BC的对称点H点,如图2,
连接BH,则A、B、H三点共线,
连接DH,DH与BC的交点即为所求的E点.
根据对称性可知AE=HE,
所以AE+DE=DH.
在Rt△ADH中,DH2=AH2+AD2=82+42=80
∴DH=4
∴BF+DE最小值为4
故选: D.
【点评】本题主要考查了正方形的性质、全等三角形的判定和性质、最短距离问题,一般求两条线段最短距离问题,都转化为一条线段.
4.如图,在菱形中, , , ,的半径分别为2和1, , ,分别是边、和上的动点,则的最小值是( )
A. B.2 C.3 D.
【答案】C
【分析】利用菱形的性质及相切两圆的性质得出P与D重合时的最小值,进而求解即可.
【解答】解:作点A关于直线CD的对称点A´,连接BD,DA´,
∵四边形ABCD是菱形,
∴AB=AD,
∵∠BAD=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,
∵∠BDC=∠ADB=60°,
∴∠ADN =60°,
∴∠A´DN=60°,
∴∠ADB+∠ADA´=180°,
∴A´,D,B在一条直线上,
由此可得:当点P和点D重合,E点在AD上,F点在BD上,此时最小,
∵在菱形ABCD中,∠A=60°,
∴AB=AD,
则△ABD为等边三角形,
∴BD=AB=AD=3,
∵⊙A,⊙B的半径分别为2和1,
∴PE=1,DF=2,
∴的最小值为3.
故选C.
【点评】本题考查了菱形的性质,等边三角形的性质,点与圆的位置关系等知识.根据题意得出点P位置是解题的关键.
5.如图,等边△ABC中,BD⊥AC于D,AD=,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为( )
A.3cm B.4cm C.5cm D.6cm
【答案】C
【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,
【解答】解:如图,∵△ABC是等边三角形,
∴BA=BC,
∵BD⊥AC,
∴AD=DC=,
作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,
∵AQ=2cm,AD=DC=,
∴QD=DQ′=(cm),
∴CQ′=BP=2(cm),
∴AP=AQ′=5(cm),
∵∠A=60°,
∴△APQ′是等边三角形,
∴PQ′=PA=5(cm),
∴PE+QE的最小值为5cm.
故选:C.
【点评】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.
6.如图,在锐角△ABC中,AB=AC=10,S△ABC =25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
A.4 B. C.5 D.6
【答案】C
【分析】根据AD是∠BAC的平分线,AB=AC可得出确定出点B关于AD的对称点为点C,根据垂线段最短,过点C作CN⊥AB于N交AD于M,根据轴对称确定最短路线问题,点M即为使BM+MN最小的点,CN=BM+MN,利用三角形的面积求出CN,从而得解.
【解答】解:如图,∵AD是∠BAC的平分线,AB=AC,
∴点B关于AD的对称点为点C,
过点C作CN⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,CN=BM+MN,
∵AB=10,S△ABC=25,
∴×10•CN=25,
解得CN=5,
即BM+MN的最小值是5.
故选:C.
【点评】本题考查了轴对称确定最短路线问题,垂线段最短的性质,等腰三角形的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
二、填空题
7.如图所示,Rt△ABC中,AC=BC=4,AD平分∠BAC,点E在边AB上,且AE=1,点P是线段AD上的一个动点,则PE+PB的最小值等于_____.
【答案】5
【分析】作E关于AD的对称点E′,连接BE′交AD于P,于是得到PE+PB的最小值=BE′,根据勾股定理即可得到结论.
【解答】解:作E关于AD的对称点E′,连接BE′交AD于P,
则此时PE+PB有最小值,PE+PB的最小值=BE′,
∴AE′=AE=1,
∵AC=BC=4,
∴CE′=3,
∴BE′=,
∴PE+PB的最小值=5,
故答案为:5.
【点评】此题主要考查了利用轴对称求最短路径问题以及勾股定理等知识,根据已知得出对应点P位置是解题关键.
8.如图,正方形的面积为16,为的中点,为对角线上的一个动点,连接、,则线段的最小值是______.
【答案】
【分析】连接CF,当点E,F,C在同一直线上时,AF+FE的最小值为CE长,根据勾股定理计算即可.
【解答】解:∵四边形ABCD为正方形,
∴A关于BD的对称点为C,
则AF=CF,
∴线段的最小值为线段的最小值,
∴当点E,F,C在同一直线上时,AF+FE的最小值为CE长,
∵正方形ABCD的面积为16,
∴AD=CD=4,
∵E为AD中点,
∴DE=2,
∴在Rt△CED中,
,
则线段的最小值是,
故答案为:.
【点评】本题考查的是轴对称,最短路线问题,根据正方形的性质作得出A关于BD的对称点C是解答此题的关键.
9.如图,,已知边长为2的正,两顶点A,B分别在射线OM、ON上滑动,当时,________,滑动过程中,连结OC,则线段OC长度的取值范围是________.
【答案】53°
【分析】根据三角形内角和为180°,等边三角形各内角为60°,根据∠OAB=23°,即可求得∠NBC的度数;取AB的中点D,连接OD及DC,根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上
的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值,当△ABC的边与OM和ON共线时,OD最小,且为2,即可得出OC的长度范围.
【解答】解:等边三角形各内角为60°,
∵∠NBC=180°-∠ABC-∠ABO,∠ABO=90°-∠OAB,∠OAB=23°,
∴∠NBC=53°;
取AB中点D,连OD,DC,有OC≤OD+DC,
当O、D、C共线时,OC有最大值,最大值是OD+CD.
∵△ABC为等边三角形,D为中点,
∴BD=1,BC=2,根据勾股定理得:CD=,
又△AOB为直角三角形,D为斜边AB的中点,
∴OD=AB=1,
∴OD+CD=1+,即OC的最大值为1+,
当△ABC的边与OM和ON共线时,OD最小,且为2,
∴线段OC的取值范围是:,
故答案为:53°;.
【点评】本题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.
10.如图,在矩形ABCD中,AB=4,AD=5,连接AC,O是AC的中点,M是AD上一点,且MD=1,P是BC上一动点,则PM﹣PO的最大值为_____.