1 / 6
文档名称:

湘教版七年级下期期中考试数学试卷.rar

格式:rar   大小:44KB   页数:6页
该文档为压缩包格式,解压后包含1个文件,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

湘教版七年级下期期中考试数学试卷.rar

上传人:1905133**** 2025/4/17 文件大小:44 KB

下载得到文件列表

七年级期中考试试卷.doc [221 KB]

相关文档

文档介绍

文档介绍:该【湘教版七年级下期期中考试数学试卷 】是由【1905133****】上传分享,文档一共【6】页,该文档可以免费在线阅读,需要了解更多关于【湘教版七年级下期期中考试数学试卷 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。耀祥中学2009年七年级下期期中考试数学试卷
一、选择题:(每题3分,共30分)
如图 点E在AC延长线上,
下列条件中能判断AB∥CD的是 ( )
A、 ∠3=∠4 B、 ∠1=∠2 C、 ∠D=∠DCE D、 ∠D+∠ACD=1800
2、下面的每组图形中,左面的平移后可以得到右面的是( )
A B C D
下列说法正确的是 ( )
A、 a、b、c是直线,且a∥b, b∥c,则a∥c
B、 a、b、c是直线,且a⊥b, b⊥c ,则a⊥c
C、 a、b、c是直线,且a∥b, b⊥c则a∥c
D、 a、b、c是直线,且a∥b, b∥c,则a⊥c
4、如果满足>且>,则的取值范围是 (   )
A、>  B、<   C、<<   D、无解
5、已知且>y,则的取值范围是 ( )
A、>  B、< C、>  D、<
6、若关于的不等式组 <无解,则的取值范围是 ( )

A、≥5 B、≤5 C、>5 D、<5
7.如果是二元一次方程组的解,那么,的值是 ( )
A. B. C. D.
8.在等式中,当x=0时,y=;当x=时,y=0,则这个等式是( )
A. B. C. D.
9、若方程组中,若未知数x、y满足x+y>0,则m的取值范围是( )

10.如果,其中xyz≠0,那么x:y:z=( )
A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1
二、填空题:(每题3分,共30分)
11、已知,,如果用表示,则= .
12、设A=,B=,则当_________时,A<2B.
13、若AB⊥CD于点D,则∠ADC=____________
14、若|2x-y+1|+|x+2y-5|=0,则x=    ,y=     
15、如图,两条直线MN、PQ相交于点O,OG平分∠NOQ,
∠1:∠2=2:5,则∠1= °,∠2= °
16、°=_____°_____′
17.在同一平面内,两条直线的位置关系只有两种_________
18、如图,直线a∥b,且∠1=28°,∠2=50°,
则∠ABC=___ ____
19、当m=______时,方程组有无穷多解
20、如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走 向是北偏东50°,如果甲、,那么在乙岸施工时,应按β为_____度的方向动工.

耀祥中学2009年七年级下期期中考试数学试卷--答卷
(请同学们将答案都写在答卷上,只交答卷)
一、选择题:(每题3分,共30分)
1
2
3
4
5
6
7
8
9
10
二、填空题:(每题3分,共30分)
11、= . 12、当_________时 13、∠ADC=____________
14、x=    ,y=      15、∠1= °,∠2= °
16、°=_____°_____′ 17、_________ 18、∠ABC=___ ____
19、m=______ 20、β为_____度
三、解答题:(共60分)
21、解下列不等式组(方程组)(每题5分)
(1) (2)

(3) (4)
22、填写推理理由(5分)
已知:如图,D、E、F分别是BC、CA、AB上的点,D∥AB,DF∥AC
试说明∠FDE=∠A
解:∵DE∥AB( )
∴∠A+∠AED=1800 ( )
∵DF∥AC( )
∴∠AED+∠FED=1800 ( )
∴∠A=∠FDE( )
23、若不等式组的解集为,求的值。(5分)
24、已知:如图∠1=∠2,∠C=∠D,∠A=∠F相等吗?试说明理由(5分)
25.已知与的值互为相反数,求:
(1)、的值;
(2)的值.
26、(10分)我校应扩建需用A、B两种人行道砖共30万块,,,,,;生产1万块B砖,需用甲种原料2万千克,乙种原料
5万千克,.
(1)利用现有原料,按A、B两种人行道砖的生产块数(以1万块为单位,且取整数),有哪几种符合题意的生产方案?请你帮助设计.(6分)
(2)你设计的(生产方案中,哪一种方案总造价最低?最低造价是多少?(4分)
27、(10分)阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、;买2个鸡蛋,4个鸭蛋、.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知;
视为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视为常数,依题意得
解这个关于y、z的二元一次方程组得
于是.
评注:也可以视z为常数,将上述方程组看成是关于、的二元一次方程组,解答方法同上,你不妨试试.
分析:视为整体,由(1)、(2)恒等变形得


解法2:设,,代入(1)、(2)可以得到如下关于、的二元一次方
程组
由⑤+4×⑥,得,.
评注:运用整体的思想方法指导解题.视,为整体,令,,代人①、②将原方程组转化为关于、的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
品名
次数
A1
A2
A3
A4
A5
总钱数
第一次购
买件数
l
3
4
5
6
1992
第二次购 买件数
l
5
7
9
11
2984

那么,购买每种教学用具各一件共需多少元?