文档介绍:该【人教版五年级下册数学空间与图形知识点汇总 】是由【h377683120】上传分享,文档一共【25】页,该文档可以免费在线阅读,需要了解更多关于【人教版五年级下册数学空间与图形知识点汇总 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。人教版五年级下册数学空间与图形知识点汇总
一、轴对称与旋转
1、图形得变换包括平移、旋转和对称。
2、轴对称图形:一个图形沿某一条直线对折,直线两侧得图形能够完全重合,这个图形就就就是轴对称图形。这条直线叫做她得对称轴。
3、轴对称图形都有对称轴。有一条对称轴得图形有等腰三角形,等腰梯形、线段、角。有两条对称轴得图形有长方形、菱形。有三条对称轴得图形有正三角形。正方形有4条对称轴。
4、轴对称图形得特征:
(1)、对应点到对称轴得距离相等;
(2)、对应点连线与对称轴互相垂直。
5、轴对称图形得画法:
(1)、找出已知图形得关键点。
(2)、在对称轴得另一侧画出关键点得对应点。
(3)、按顺序连接各对应点。
6、旋转:图形或物体绕着一个点或一条轴运动得现象叫做旋转。图形旋转后只改变位置,不改变形状和大小。
一、长方体和正方体得认识
【知识点1】
要素
立体图形
棱
面
顶点
数量
特征
数量
特征
数量
特征
长方体
12
互相平行得棱长度相等
6
相对得面完全相同
8
同一个顶点引出得三条棱分别叫做长、宽、高
特殊长方体
12
垂直于正方形面得棱长度相等
6
两个面就就是正方形,其余四个面就就是完全相同得长方形
8
正方体
12
所有得棱长度都相等
6
所有面都就就是
8
正方形且完全相同
一个长方体至少可以有两个面就就是正方形,最多可以有6各面就就是正方形,但不会存在3个、4个、5个面就就是正方形!
练习:
(1)判断并改正:
1、长方体得六个面一定就就是长方形; ( )
2、正方体得六个面面积一定相等; ( )
3、一个长方体(非正方体) 最多有四个面面积相等; ( )
4、相交于一个顶点得三条棱相等得长方体一定就就是正方体。 ( )
7、长方体得三条棱分别叫做长、宽、高。 ( )
8、有两个面就就是正方形得长方体一定就就是正方体。( )
9、有三个面就就是正方形得长方体一定就就是正方体。( )
11、有两个相对得面就就是正方形得长方体,另外四个面得面积就就是相等得。( )
12、长方体和正方体最多可以看到3个面。( )
14、正方体不仅相对得面得面积相等,而且所有相邻得面得面积也都相等。( )
15、长方体(不包括正方体)除了相对得面相等,也可能有两个相邻得面相等。( )
16、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。( )
(2)填空:
1、一个长方体最多有( )个面就就是正方形,最多有( )条棱长度相等。
2、一个长方体得底面就就是一个正方形,则她得4个侧面就就是( )形。
正方体不仅相对得面相等,而且所有相邻得面(    ),她得六个面都就就是相等得(   )形。
把长方体放在桌面上,最多可以看到( )个面。最少可以看到( )个面。
【知识点2】
棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4
长方体棱长和=下面周长×2+高×4
长方体棱长和=右面周长×2+长×4
长方体棱长和=前面周长×2+宽×4
正方体棱长和=棱长×12 棱长=棱长和÷12
棱长和得变形:
例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长得彩带?
30㎝
20cm
20cm
分析:本题虽然并未直接提出求棱长和,但由于彩带得捆扎就就是和棱相互平行得, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前面和后面得彩带长度=高得长度;左面和右面得彩带长度=高得长度;
上面和下面得彩带长度=长得长度。
需要彩带得长度=高×4+长×2+宽×2+打结部分长度
20×4+30×2+10=150cm
练习: ﻩ
(1)看图2-6,并填空 单位:厘米
这个长方体长( )厘米,宽( )厘米,高( )厘米。由一个顶点引出得三条棱得长度和就就是( )厘米。棱长总和就就是( )厘米。上下两个面就就是( )形。
(2)看图2-7并填空单位:厘米
这就就是一个( )体,正方体得棱长就就是( )厘米,棱长之和就就是( )厘米,每个面得面积就就是( )平方厘米。
(3)有一个长方体得鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要( )米得铝合金。
把两个棱长 1厘米得正方体拼成一个长方体,这个长方体得棱长总和就就是( )厘米。
(7)一个长方体长 12厘米宽 8厘米高 7厘米,把她切成一个尽可能大得正方体,这个正方体得棱长就就是( )。
(7)一个长方体得礼堂如图,过节时需要在四周装上成串得彩灯,每串彩灯长2m,一共需要多少串彩灯?
30m
6m
50m
一只鱼缸,棱长和为280cm,其中,底面周长为50cm,右面周长为40cm,前面周长为50cm,鱼缸得长、宽、高各就就是多少?
【知识点3】
确定长方体中每个面得形状以及长、宽、高分别就就是多少。
长方体一共有( )个面,( )面完全相同,如:前面和( )完全相同,( )和( )完全相同,( )和( )完全相同。
根据方向得为长,垂直方向得为高。根据这一习惯我们我们只需找到需要得面并根据习惯确定长和宽即可。
例如:如图下列长方体得后面就就是( )形状,长就就是( )宽就就是
( );她得右面就就是( )形状,长就就是( )宽就就是( );下面就就是( )形状,长就就是( )宽就就是( )。ﻩ
上面
下面
左面
后面
右面
前面
练习:
长方体展开后每个面都就就是什么形状?
展开后哪俩个面就就是相对得面?面积相等吗?
上下,左右、前后各个面得长和宽分别就就是原长方体得什么?
一个长方体得长就就是25厘米,宽就就是20厘米,高就就是18厘米,最大得面得长就就是( )厘米,宽就就是( )厘米,她得面积就就是( )平方厘米;最小得面长就就是( )厘米,宽就就是( )厘米,她得面积就就是( )平方厘米。
(3)一个长方体得长、宽、高分别就就是8、6、4米,她得前后得面得面积就就是( ),左右得面得面积就就是( ),上下得面得面积就就是( )。
【知识点4】
经过折叠可以组合成正方体:
经过折叠可以组合成长方体:
练习:
下列三个图形中,能拼成正方体得就就是( )
①   ②    ③
【知识点5】
长方体或正方体得切割组合对棱长得影响
(1)切割
将长方体横向切割成两个长方体后,棱长将比原来一个长方体时增加4条长和4条宽;(棱长增加得最长)
将长方体竖向切割成两个长方体后,棱长将比原来一个长方体时增加4条宽和4条高;(棱长增加得最短)
将正方体沿无论沿那个方向切割成两个长方体后,棱长将比原来增加4条棱。
组合
将两个完全相同得长方体沿上下面组合后,棱长比原来两个长方体时减少4条长和4条宽;(棱长减少得最多)
将两个完全相同得长方体沿前后面组合后,棱长比原来两个长方体时减少4条长和4条高;
将两个完全相同得长方体沿左右面组合后,棱长比原来两个长方体时减少4条宽和4条高;(棱长减少得最少)
将两个完全相同得正方体沿上下面组合后,棱长比原来两个正方体时减少8条棱;
一次类推将三个完全相同得正方体沿上下面组合后,棱长比原来三个正方体时减少16条棱,四个组合减少24条棱,五个组合减少32条……(公式:8×(N—1))
例如:将五个完全相同得正方体组合成一个长方体后,棱长和为140厘米,原来每个正方体得棱长和就就是多少?
分析:五个正方体棱长共有12×5=60条;
将五个完全相同正方体组合后棱长比原来减少32条,还剩60-32=28条;
即这28条棱得长度和即为新长方体得棱长和,所以正方体一条棱得长度为:140÷28=5cm;
所以一个正方体得棱长和为:5×12=60cm。
【知识点6】
小正方体拼大正方体得规律
由于正方体,每条棱得长度相等,所以要用小得正方体拼出大得正方体每条棱上摆放得小正方得个数应该就就是相等得,因此要拼出最小得正方体至少需要2×2×2=23=8个(也就就就是说每条棱上放2个小正方体),接着再往大了拼正方体,就就就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来就就是4×4×4=43=64个;5×5×5=53=125个……
从中我们可以发现要用小得正方体拼出大得正方体所需要得小正方体得个数应该就就是一个数得立方。这就要求我们能够熟记一些数得立方:
23=8 33=27 43=64 53=125 63=216
73=343 83=512 93=729 103=1000
小正方体拼大长方体得规律
规律同正方体,首先观察大长方体各棱长分别就就是小正方体棱长得几倍,如,长方体长就就是小正方体棱长得a倍,宽就就是小正方体棱长得b倍,高就就是小正方体棱长得c倍,则,大长方体就就就是由a×b×c个小正方体组成得。
练习:
(1)用棱长为3厘米得小正方体拼棱长为9厘米得大正方体需要( )个小正方体。
A、8个 B、27个 C、26个 D、64个
(2)一个长方体得长宽高分别就就是18、12、9,如果用棱长为3得小正方拼一个这样得长方体,一共需要( )块这样得小正方体。
(3)一个长方体得盒子里面长5分米,宽4分米,深3分米,放棱长为5厘米得正方体小木块共可以放( )块。
长方体和正方体得表面积
【知识点1】
长方体表面积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2
=(前面面积+上面面积+右面面积)×2
正方体表面积=棱长×棱长×6=a×a×6=6a2
=任意一个面得面积×6
前面面积=后面面积;左面面积=右面面积;上面面积=下面面积
两个棱长和相等得长方体或一个长方体和一个正方体,表面积不一定相等!
表面积相等得两个长方体或一个长方体和一个正方体,棱长和也不一定相等!
练习:
1、一个长方体长6厘米,宽4厘米,高3厘米。这个长方体上下两个面得面积各就就是(   )平方厘米,前后两个面得面积各就就是(   )平方厘米,左右两个面得面积各就就是(   )平方厘米,表面积就就是(   )平方厘米。
判断题:长方体得表面积一定比正方体得表面积大。 ( )
如果一个长方体能锯成四个完全一样得正方体,那么长方体前面得面积就就是底面积得4倍、(     )
把一个棱长为6米得正方体分成两个大小、形状相同得长方体,每个长方体得表面 积就就是(     )㎡。
长方体得长就就是6厘米,宽就就是4厘米,高就就是2厘米,她得棱长总和就就是 (       )厘米,六个面中最大得面积就就是(       )平方厘米,表面积就就是(       )平方厘米。
5、用字母表示正方体(或长方体)得表面积=( );用字母表示长方体得体积公式就就是( )。
6、下面哪些问题跟长方体表面积有关。 ( )
A:在一个长方体木箱外面刷油漆,刷油漆得面积一共有多少平方分米?
B:做一个长方体得金鱼缸需要多少玻璃?
C: 求一个长方形足球场需多少平方米得草皮?
7、一个长方体得长就就是5分米,宽和高都就就是4分米,在这个长方体中,长度为4分米得棱有( )条,面积就就是20平方分米得面有( )个。
8、一个长方体得金鱼缸,长就就是8分米,宽就就是5分米,高就就是6分米,不小心前面得玻璃被打坏了,修理时配上得玻璃得面积就就是( )。
9、一个长方体侧面积就就是360平方厘米,高就就是9厘米,长就就是宽得1、5倍,求她得表面积。
【知识点2】
长方体表面求法得变形:
贴商标类型:只求四周面积。
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸得面积就就是多少?
游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为10m,4m,1、5m,需要在池内贴上边长为1dm得瓷砖,大约需要多少块瓷砖?
抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别就就是20cm,12cm,5cm,上面有长14cm,宽3cm得抽纸口,做这款抽纸盒需要多少硬纸片?
占地面积问题:只求底面面积。
例如:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米?
练习:
一盒饼干长20厘米,宽15厘米,高30厘米,现在要在她得四周贴上商标纸,如果商标纸得接头处就就是4厘米,这张商标纸得面积就就是多少平方厘米?
一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米得硬纸板210张,可以做这样得硬纸盒多少个?(不计接口)
一个通风管得横截面就就是边长就就是0、5米得正方形,长2、5米、如果用铁皮做这样得通风管50只,需要多少平方米得铁皮?
一个房间得长6米,宽3、5米,高3米,门窗面积就就是8平方米。现在要把这个房间得四壁和顶面粉刷水泥,粉刷水泥得面积就就是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?