文档介绍:该【2024年江苏高考数学真题及答案 】是由【知识徜徉土豆】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【2024年江苏高考数学真题及答案 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
1 / 34
》》》》》》考试真题整理《《《《《《
2024年江苏高考数学真题及答案
本试卷共10页,19小题,满分150分.
注意事项:
,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
:每小题选出答案后,、草稿纸和答题卡上的非答题区域均无效.
:、草稿纸和答题卡上的非答题区域均无效.
,请将本试卷和答题卡一并上交.
一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
1. 已知集合,则( )
A. B. C. D.
2. 若,则( )
A. B. C. D.
3. 已知向量,若,则( )
A. B. C. 1 D. 2
4. 已知,则( )
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
2 / 34
》》》》》》考试真题整理《《《《《《
A. B. C. D.
5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
6. 已知函数为,在R上单调递增,则a取值的范围是( )
A. B. C. D.
7. 当时,曲线与交点个数为( )
A. 3 B. 4 C. 6 D. 8
8. 已知函数为的定义域为R,,且当时,则下列结论中一定正确的是( )
A. B.
C. D.
二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.
9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
3 / 34
》》》》》》考试真题整理《《《《《《
A. B.
C. D.
10. 设函数,则( )
A. 是的极小值点 B. 当时,
C. 当时, D. 当时,
11. 造型可以做成美丽的丝带,,到点的距离与到定直线的距离之积为4,则( )
A. B. 点在C上
C. C在第一象限的点的纵坐标的最大值为1 D. 当点在C上时,
三、填空题:本题共 3 小题,每小题 5 分,共 15 分.
12. 设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为___________.
13. 若曲线在点处的切线也是曲线的切线,则__________.
14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
4 / 34
》》》》》》考试真题整理《《《《《《
7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.
四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
15. 记内角A、B、C的对边分别为a,b,c,已知,
(1)求B;
(2)若的面积为,求c.
16. 已知和椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
17. 如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
18. 已知函数
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
6 / 34
》》》》》》考试真题整理《《《《《《
(1)若,且,求的最小值;
(2)证明:曲线是中心对称图形;
(3)若当且仅当,求的取值范围.
19. 设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
参考答案
本试卷共10页,19小题,满分150分.
注意事项:
,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
:每小题选出答案后,、草稿纸和答题卡上的非答题区域均无效.
:、草稿纸和答题卡上的非答题区域均无效
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
6 / 34
》》》》》》考试真题整理《《《《《《
.
,请将本试卷和答题卡一并上交.
一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.
1. 已知集合,则( )
A. B. C. D.
【答案】A
【解析】
【分析】化简集合,由交集的概念即可得解.
【详解】因为,且注意到,
从而.
故选:A.
2. 若,则( )
A. B. C. D.
【答案】C
【解析】
【分析】由复数四则运算法则直接运算即可求解.
【详解】因为,所以.
故选:C.
3. 已知向量,若,则( )
A. B. C. 1 D. 2
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
7 / 34
》》》》》》考试真题整理《《《《《《
【答案】D
【解析】
【分析】根据向量垂直的坐标运算可求的值.
【详解】因为,所以,
所以即,故,
故选:D.
4. 已知,则( )
A. B. C. D.
【答案】A
【解析】
【分析】根据两角和的余弦可求的关系,结合的值可求前者,故可求的值.
【详解】因为,所以,
而,所以,
故即,
从而,故,
故选:A.
5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A. B. C. D.
【答案】B
【解析】
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
8 / 34
》》》》》》考试真题整理《《《《《《
【分析】设圆柱的底面半径为,根据圆锥和圆柱的侧面积相等可得半径的方程,求出解后可求圆锥的体积.
【详解】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
6. 已知函数为,在R上单调递增,则a取值的范围是( )
A. B. C. D.
【答案】B
【解析】
【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.
【详解】因为在上单调递增,且时,单调递增,
则需满足,解得,
即a的范围是.
故选:B.
7. 当时,曲线与的交点个数为( )
A. 3 B. 4 C. 6 D. 8
【答案】C
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
9 / 34
》》》》》》考试真题整理《《《《《《
【解析】
【分析】画出两函数在上的图象,根据图象即可求解
【详解】因为函数的的最小正周期为,
函数的最小正周期为,
所以在上函数有三个周期的图象,
在坐标系中结合五点法画出两函数图象,如图所示:
由图可知,两函数图象有6个交点.
故选:C
8. 已知函数为的定义域为R,,且当时,则下列结论中一定正确的是( )
A. B.
C. D.
【答案】B
【解析】
【分析】代入得到,再利用函数性质和不等式的性质,逐渐递推即可判断.
【详解】因为当时,所以,
又因为,
则,
》》》》》》考试真题整理《《《《《《
》》》》》》考试真题整理《《《《《《
10 / 34
》》》》》》考试真题整理《《《《《《
,
,
,
,则依次下去可知,则B正确;
且无证据表明ACD一定正确.
故选:B.
【点睛】关键点点睛:本题的关键是利用,再利用题目所给的函数性质,代入函数值再结合不等式同向可加性,不断递推即可.
二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.
9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A. B.
C. D.
【答案】BC
【解析】
【分析】根据正态分布的原则以及正态分布的对称性即可解出.
【详解】依题可知,,所以,