1 / 9
文档名称:

牛顿莱布尼茨公式试讲公开课一等奖课件赛课获奖课件.ppt

格式:ppt   大小:1,686KB   页数:9页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

牛顿莱布尼茨公式试讲公开课一等奖课件赛课获奖课件.ppt

上传人:业精于勤 2025/5/12 文件大小:1.65 MB

下载得到文件列表

牛顿莱布尼茨公式试讲公开课一等奖课件赛课获奖课件.ppt

相关文档

文档介绍

文档介绍:该【牛顿莱布尼茨公式试讲公开课一等奖课件赛课获奖课件 】是由【业精于勤】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【牛顿莱布尼茨公式试讲公开课一等奖课件赛课获奖课件 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。牛顿 ── 莱布尼茨公式
复习回忆
定积分的物理意义
一、
若物体以速度 作变速直线运动,由定积分的物理意义,物体从某时刻a到b所通过的旅程为:
另首先:物体从某时刻a到b所通过的旅程可以记作:
于是便有:
注意
旅程函数 与速度函数 之间的关系是:
因此便把定积分与不定积分联络起来了。
1
积分上限函数
积分上限函数的概念
二、
设函数 在区间 上持续,由定积分的定义, 的值由被积函数和积分区间确定,与积分变量的符号无关,任意的 , 均有一种数值与其对应,因此 是上限 的函数,称为积分上限函数。记作:
显然
2
积分上限函数的性质
定理1
三、
假如函数 在区间 上持续,则积分上限函数
在区间 上可导,且它的导数等于被积函数,
证明:


由积分中值定理
由 持续性

3
定理2
原函数存在定理
4
牛顿—莱布尼茨公式
四、
证明:
微积分基本公式:
假如 是持续函数 在区间 上的一种原函数,则
是 在 上的一种原函数

规定持续函数的定积分,
只规定出它的不定积分!
其中
5
例题
五、
例1 求
例2 求
解:原式
解:原式
6
内容小结
六、
1
2
3
积分上限函数
积分上限函数的导数
微积分基本公式
7
请各位评委老师提出宝贵意见!
謝謝!
10