1 / 12
文档名称:

平面与平面垂直的性质定理教学设计.doc

格式:doc   大小:191KB   页数:12页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

平面与平面垂直的性质定理教学设计.doc

上传人:海洋里徜徉知识 2025/5/18 文件大小:191 KB

下载得到文件列表

平面与平面垂直的性质定理教学设计.doc

相关文档

文档介绍

文档介绍:该【平面与平面垂直的性质定理教学设计 】是由【海洋里徜徉知识】上传分享,文档一共【12】页,该文档可以免费在线阅读,需要了解更多关于【平面与平面垂直的性质定理教学设计 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。平面与平面垂直的性质定理教学设计

教材分析
教材的地位和作用:《平面与平面垂直的性质》选自《普通高中课程标准实验教科书》数学第二册(人教A版)第三节第4课时,平面与平面垂直问题是平面与平面的重要内容,也是高考考察的重点,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力,这些都是学生此后学习和工作中必备的数学素养。
从知识体系看,“平面与平面垂直的性质”是线面垂直与面面垂直内容的延续,不仅可以加深运用线面垂直证线线垂直,也可以实现面面垂直的证明。因此,我们可以说线面垂直关系是线线垂直关系的纽带,通过线面垂直可以实现线线垂直和面面垂直的互相转化。
学情分析:
学生已有的知识结构:在学习本课之前,学生已掌握了线线垂直、线面垂直及面面垂直的概念,鉴定定理,及线面垂直的性质定理,
学生已具有了对空间几何图形的一定水平层次的想象能力和一定的逻辑推理能力和分析问题的能力。
教学对象:高一年级的学生,已有一定的立体感,学习爱好较浓,具有一定的想象能力和分析问题、解决问题的能力。但由于年龄的因素,思维尽管活跃,灵敏,却缺少冷静,深刻,因而片面,不够严谨。这个阶段的学生还以抽象逻辑思维为重要发展趋势,他们的思维正在从经验性的逻辑思维向抽象的逻辑思维发展,仍需依赖一定的具体形象的经验材料来理解抽象的逻辑关系。本课借助生活中丰富的典型实例,让学生通过实验、分析、猜想、归纳、论证等活动过程,从中了解和体验空间线面、面面之间的垂直关系,在实验、猜想和论证中发展学生的逻辑推理能力、空间想象能力和分析问题、解决问题的能力。
从学生的认知角度来看:学生很容易把本节内容与线面垂直的性质定理及应用进行类比,这是积极因素,应因式利导,不利因素是学生的抽象概括能力和空间想象力有待提高,故采用多媒体辅助教学。
三.设计理念
长期以来,我们的课堂教学重结果,轻过程,在数学教学中往往采用所谓的“掐头去尾烧中段”的方法,到头来把学生强化成只会套用结论的解题机器,这样的学生面对新问题就束手无策。
数学是思维的体操,新课程提倡:强调过程,强调学生探索新知识的经历和获得新知识的体念,必须让学生追求过程的体念。
基于以上结识,在设计本节课时,不是简朴地告诉学生两个平面垂直的性质定理的内容,而是创设一些数学情境,让学生自己去发现定理。在这个过程中,学生在课堂上的主体地位得到充足发挥,极大地激发了学生的学习爱好,也提高了他们提出问题,分析问题,解决问题的能力,这正是新课程所提倡的教学理念。
四.教学目的 :
根据教学大纲的规定、本节教材的特点和本班学生的认知规律,本节课的教学目的拟定为:
(1)知识技能目的:探究平面与平面垂直的性质定理的内容及定理的证明, 掌握面面垂直的性质定理的应用。
(2)过程与方法目的:通过对定理的探究和证明,向学生渗透从特殊到一般、类比与转化等数学思想,培养学生观测、比较、想象、概括等逻辑推理能力及学生转化的思想。
能通过实验提出自己的猜想并能进行论证,灵活运用知识学会分析问题、解决问题。
(3)、能力目的:以学生的经验为基础,通过实验、分析、猜想、归纳、论证、运用培养学生分析问题、解决问题的能力,在探索空间线线、线面、面面关系过程中逐步建立空间观念;培养学生敢于探索,敢于创新的精神,从探索中获得成功的体验,实现自我价值,培养自信。
(4)情感目的:进一步丰富数学学习的成功体验,激发对空间图形研究的爱好,形成积极参与数学活动,积极与别人合作交流的意识。
五.重点、难点分析:
教学重点:平面与平面垂直的性质定理
教学难点:灵活应用面面垂直的性质定理证明线线垂直和面面垂直,达成三者的互相转化。
六.教法和学法分析:
1.充足运用现实情景,尽也许增长教学过程的趣味性、实践性。运用多媒体课件和实物模型等丰富学生的学习资源,生动活泼地展示图形,强调学生的动手操作实验和积极参与。通过实验-猜想-论证-运用,培养学生分析问题解决问题的能力;通过丰富多彩的集体讨论、小组活动,以合作学习促自主探究。
2.教师是学生学习的组织者、促进者、合作者;在本节的备课和教学过程中,为学生的动手实践,自主探索与合作交流提供机会,搭建平台;鼓励学生提出自己的见解,学会提出问题,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,作学生健康心理、健康品德的促进者、催化剂。通过恰当的教学方式引导学生学会自我调适,自我选择
七.课堂设计
(一)教学准备:
教师: 制作上课用的三角板教具模型和铅垂线;准备学生用的表达平面的纸板和表达直线的木棍
设计意图: (1)为教学实验作准备(2)让学生更直观、形象地感受线面关系。
(二)教学实行
活动一:(回顾已学知识)
1、教师实验:检查教室讲台是否成水平面:让三角板的一边与铅垂线重合,另一边在讲台桌面上,请一学生检查与桌面是否密封。转动一下,再验证。师:结论:桌面是水平的。问题:教师的判断对还是错?为什么?
2、问题:能否将纸板放在桌面上,使它与桌面正好垂直。请说明理由
学生检查教师实验,回答:是密封的。
学生回答问题。
学生实验:(可有几种方法)
让几个学生通过亲身实验,体验知识在实际的运用。回顾已学知识
设计意图:以实验引入课题,使学生回顾已学知识,体验知识在实际中的运用,感受大众的数学。同时以上设计更能激发起学生学习的爱好。
活动二:(创设情境,提出问题)
提问:观测黑板所在平面与地面垂直,黑板面内的直线与地面都垂直吗?先让学生思考,然后演示实验:将一根木棍放到黑板面内,转动木棍,让学生观测木棍与地面的关系,由学生总结,得出结论:只有当木棍与黑板面和地面的交线垂直时,木棍才与地面垂直
设计意图:通过问题导入,让学生思考、探索 ,实验验证得出猜想;学生的空间想象力和对几何图形的记忆是发展学生空间观念的重要基础。建立数学模型
通过实验、猜想、归纳、论证等活动是学生积极构建知识的一个过程。
活动三:(师生互动,探究问题)
由此得到启发,让学生思考:假如两个平面互相垂直,那么在第一个平面内垂直于交线的直线,是否垂直于第二个平面呢?
  先让学生思考一段时间,然后分析:
  如图2, , , , ,
  求证: .
  分析:在 内作 .
  要证 ,只需证 垂直于 内的两条相交直线就行,而我们已有 ,只需寻求另一条就够了,而我们尚有 这个条件没使用,由 定义,则 为直角,即有 ,也就有 ,问题也就得到解决.可由学生写出证明过程.
  学生归纳得出结论:(两平面垂直的性质定理):假如两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
出示课题:两平面垂直的性质定理
活动四:(学生小结)
两平面垂直的性质定理应注意:
定理的条件有:平面垂直,线在面内,线垂直交线
设计意图:使学生进一步体会性质定理的条件,进一步掌握符号语言的运用
 
  下面我们来看一下两个平面垂直的性质的另一个定理,也即课本的例2(P37).
  假如两个平面互相垂直,那么通过第一个平面的一点垂直于第二个平面的直线,在第一个平面内.
  已知: , , , (图3).
  求证: .
  证明:设 .过点 在平面 内作直线 ,根据上面的定理有 .
  由于通过一点只能有一条直线与平面 垂直,所以直线 应与直线 重合.
  ∴ .
  
活动五:(知识拓展)
  例题  如图4, 是⊙ 的直径,点 是⊙ 上的动点,过动点 的直线 垂直于⊙ 所在平面, 、 分别是 、
的中点,直线 与平面 有什么关系?试说明理由.
  解:由 垂直于⊙ 所在平面,知 , ,即 是二面角 的平面角.由 是直径上的圆周角,知 .因此,平面 平面 .由 是△ 两边中点连线,知 ,故 .由两个平面垂直的性质定理,知直线 与平面 垂直.
  注意:本题也可以先推出 垂直于平面 ,再由 ,推出上面的结论.
设计意图:运用所学知识解决问题,激发学生爱好,使学生学会积极运用所学知识解决问题
活动六:【演练反馈】
1.如图5,在空间边形 中, 平面 , , , .求证:(1) ;(2)平面 平面 .
2.如图6, 是△ 所在平面外一点, , , .求证:平面 平面 .
3.如图7, 垂直于矩形 所在平面, 、 分别是 、 的中点,二面角 为 .求证:平面 平面 .
[参考答案]
1.提醒:由 , ,得 面 ,从而面 面 ,又 ,所以 面 ,所以 ,得 面 .