文档介绍:该【2024-2025学年IBHL数学模拟试题:函数与微积分综合练习题 】是由【小果冻】上传分享,文档一共【8】页,该文档可以免费在线阅读,需要了解更多关于【2024-2025学年IBHL数学模拟试题:函数与微积分综合练习题 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2024-2025学年IBHL数学模拟试题:函数与微积分综合练习题
一、选择题(每题5分,共20分)
1. 下列哪个函数的图像是一条直线?
A. \( f(x) = x^2 + 2x + 1 \)
B. \( f(x) = 2x + 3 \)
C. \( f(x) = \sqrt{x} \)
D. \( f(x) = e^x \)
2. 若函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处可导,且其导数为多少?
A. 1
B. 2
C. 3
D. 4
3. 下列哪个函数的导数在 \( x = 0 \) 处为0?
A. \( f(x) = x^3 \)
B. \( f(x) = x^2 \)
C. \( f(x) = x \)
D. \( f(x) = 1 \)
4. 若函数 \( f(x) = 2x^3 - 3x^2 + 4x - 1 \) 的图像在 \( x = 1 \) 处有拐点,那么该拐点的位置是?
A. \( (1, 0) \)
B. \( (1, 1) \)
C. \( (1, 2) \)
D. \( (1, 3) \)
5. 下列哪个函数的图像是一个抛物线?
A. \( f(x) = x^2 \)
B. \( f(x) = x^3 \)
C. \( f(x) = e^x \)
D. \( f(x) = \ln(x) \)
二、填空题(每题5分,共25分)
1. 若函数 \( f(x) = x^2 - 4x + 3 \) 的导数为 \( f'(x) = \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\
四、解答题(每题10分,共30分)
1. 已知函数 \( f(x) = x^3 - 6x^2 + 9x + 1 \),求函数在 \( x = 2 \) 处的切线方程。
2. 函数 \( f(x) = e^x \sin(x) \) 在 \( x = 0 \) 处的导数是多少?请解释为什么这个导数在 \( x = 0 \) 处存在。
3. 设函数 \( f(x) = \frac{x^2 - 1}{x - 1} \),求该函数在 \( x = 1 \) 处的极限。
五、应用题(每题10分,共20分)
1. 一个物体的位移 \( s(t) \) 随时间 \( t \) 的变化关系为 \( s(t) = t^3 - 6t^2 + 9t \)。求物体在 \( t = 3 \) 秒时的瞬时速度。
2. 一个质点的位置 \( x(t) \) 随时间 \( t \) 的变化关系为 \( x(t) = t^2 - 4t + 7 \)。求质点在 \( t = 1 \) 秒时的加速度。
六、证明题(每题10分,共20分)
1. 证明:如果函数 \( f(x) \) 在区间 \( [a, b] \) 上连续,并且在 \( (a, b) \) 内可导,那么存在至少一个 \( c \in (a, b) \),使得 \( f'(c) = \frac{f(b) - f(a)}{b - a} \)。
2. 证明:对于任意的实数 \( x \),有 \( e^x \geq 1 + x \)。
本次试卷答案如下:
一、选择题
1. B
解析:直线函数的一般形式为 \( f(x) = mx + b \),其中 \( m \) 是斜率,\( b \) 是截距。选项B符合这一形式。
2. A
解析:函数 \( f(x) = 3x^2 - 2x + 1 \) 的导数 \( f'(x) = 6x - 2 \),在 \( x = 1 \) 处,\( f'(1) = 6 \cdot 1 - 2 = 4 \)。
3. C
解析:导数 \( f'(x) = x \),在 \( x = 0 \) 处,\( f'(0) = 0 \)。
4. B
解析:函数 \( f(x) = 2x^3 - 3x^2 + 4x - 1 \) 的二阶导数 \( f''(x) = 12x - 6 \),在 \( x = 1 \) 处,\( f''(1) = 12 \cdot 1 - 6 = 6 \),由于 \( f''(1) \neq 0 \),所以 \( x = 1 \) 是拐点。
5. A
解析:抛物线的一般形式为 \( f(x) = ax^2 + bx + c \),其中 \( a \neq 0 \)。选项A符合这一形式。
二、填空题
1. \( f'(x) = 2x - 4 \)
解析:函数 \( f(x) = x^2 - 4x + 3 \) 的导数 \( f'(x) = 2x - 4 \)。
2. \( f'(x) = 2x + 3 \)
解析:函数 \( f(x) = 2x + 3 \) 的导数 \( f'(x) = 2 \)。
3. \( f'(x) = 1 \)
解析:函数 \( f(x) = 1 \) 的导数 \( f'(x) = 0 \)。
4. \( f''(x) = 6x - 6 \)
解析:函数 \( f(x) = 3x^2 - 2x + 1 \) 的二阶导数 \( f''(x) = 6x - 6 \)。
5. \( f(x) = x^2 \)
解析:函数 \( f(x) = x^2 \) 的导数 \( f'(x) = 2x \)。
四、解答题
1. 切线方程为 \( y = 4x - 5 \)
解析:函数 \( f(x) = x^3 - 6x^2 + 9x + 1 \) 在 \( x = 2 \) 处的导数为 \( f'(2) = 2^3 - 6 \cdot 2^2 + 9 \cdot 2 + 1 = 4 \),切点为 \( (2, f(2)) = (2, 1) \),所以切线方程为 \( y - 1 = 4(x - 2) \),即 \( y = 4x - 5 \)。
2. 导数为 \( f'(0) = 0 \)
解析:函数 \( f(x) = e^x \sin(x) \) 的导数 \( f'(x) = e^x \sin(x) + e^x \cos(x) \),在 \( x = 0 \) 处,\( f'(0) = e^0 \sin(0) + e^0 \cos(0) = 1 \cdot 0 + 1 \cdot 1 = 0 \)。由于 \( f(x) \) 在 \( x = 0 \) 处连续且可导,所以导数存在。
3. 极限为 \( f(1) = 0 \)
解析:函数 \( f(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处的极限可以通过分子分母同时除以 \( x - 1 \) 来简化,得到 \( f(x) = x + 1 \),所以 \( \lim_{x \to 1} f(x) = f(1) = 1 + 1 = 2 \)。
五、应用题
1. 瞬时速度为 \( 12 \) m/s
解析:位移函数 \( s(t) = t^3 - 6t^2 + 9t \) 的导数 \( s'(t) = 3t^2 - 12t + 9 \),在 \( t = 3 \) 秒时,\( s'(3) = 3 \cdot 3^2 - 12 \cdot 3 + 9 = 27 - 36 + 9 = 0 \),所以瞬时速度为 \( 0 \) m/s。
2. 加速度为 \( -4 \) m/s²
解析:位置函数 \( x(t) = t^2 - 4t + 7 \) 的导数 \( x'(t) = 2t - 4 \),二阶导数 \( x''(t) = 2 \),在 \( t = 1 \) 秒时,\( x''(1) = 2 \),所以加速度为 \( 2 \) m/s²。
六、证明题
1. 证明:根据拉格朗日中值定理,存在 \( c \in (a, b) \) 使得 \( f'(c) = \frac{f(b) - f(a)}{b - a} \)。
解析:由于 \( f(x) \) 在区间 \( [a, b] \) 上连续,并且在 \( (a, b) \) 内可导,根据拉格朗日中值定理,存在 \( c \in (a, b) \) 使得 \( f'(c) = \frac{f(b) - f(a)}{b - a} \)。
2. 证明:考虑函数 \( g(x) = e^x - 1 - x \),求 \( g(x) \) 的导数 \( g'(x) = e^x - 1 \)。由于 \( e^x \) 在实数范围内始终大于 \( 1 \),所以 \( g'(x) > 0 \),即 \( g(x) \) 在实数范围内单调递增。又因为 \( g(0) = e^0 - 1 - 0 = 0 \),所以对于任意的 \( x \),有 \( e^x \geq 1 + x \)。