文档介绍:该【奉化区高中2018-2019学年上学期高三数学期末模拟试卷含答案 】是由【1905133****】上传分享,文档一共【16】页,该文档可以免费在线阅读,需要了解更多关于【奉化区高中2018-2019学年上学期高三数学期末模拟试卷含答案 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。第 1 页,共 16 页
奉化区高中2018-2019学年上学期高三数学期末模拟试卷含答案
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )
A.28 B.76 C.123 D.199
2. 已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是( )
A.y=x﹣4 B.y=2x﹣3 C.y=﹣x﹣6 D.y=3x﹣2
3. “”是“一元二次方程x2+x+m=0有实数解”的( )
A.充分非必要条件 B.充分必要条件
C.必要非充分条件 D.非充分非必要条件
4. 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )
A.1 B.2 C.4 D.6
5. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )
A.y=x﹣1 B.y=lnx C.y=x3 D.y=|x|
6. 函数有两个不同的零点,则实数的取值范围是( )
A. B. C. D.
7. 已知直线 平面,直线平面,则( )
A. B.与异面 C.与相交 D.与无公共点
8. 函数f(x)=有且只有一个零点时,a的取值范围是( )
A.a≤0 B.0<a< C.<a<1 D.a≤0或a>1
9. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )
A.80 B.40 C.60 D.20
10.已知数列的各项均为正数,,,若数列的前项和为5,则( )
A. B. C. D.
11.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )
第 2 页,共 16 页
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数
12.已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于( )
A.{3,4} B.{1,2,5,6} C.{1,2,3,4,5,6} D.∅
二、填空题
13.如图,函数f(x)的图象为折线 AC B,则不等式f(x)≥log2(x+1)的解集是 .
14.函数()满足且在上的导数满足,则不等式
的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
15.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC的面积为 .
16.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是 .
17.在直角梯形分别为的中点,
点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,
则的取值范围是___________.
第 3 页,共 16 页
18.已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有f[f(x)﹣2x]=6,则f(x)+f(﹣x)的最小值等于 .
三、解答题
19.已知椭圆:(),点在椭圆上,且椭圆的离心率为.
(1)求椭圆的方程;
(2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别
交直线:于、两点,求证:.
20.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.
21.等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6,
(Ⅰ)求数列{an}的通项公式;
第 4 页,共 16 页
(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和.
22.(本小题满分12分)
已知函数.
(1)当时,讨论函数在区间上零点的个数;
(2)证明:当,时,.
23.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
24.如图所示,在四棱锥中,底面为菱形,为与的交点,平
第 5 页,共 16 页
面,为中点,为中点.
(1)证明:直线平面;
(2)若点为中点,,,,求三棱锥的体积.
第 6 页,共 16 页
奉化区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)
一、选择题
1. 【答案】C
【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.
继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.
故选C.
2. 【答案】A
【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.
两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)
∴直线AB的斜率k=1,
∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.
故选A,
3. 【答案】A
【解析】解:由x2+x+m=0知, ⇔.
(或由△≥0得1﹣4m≥0,∴.) ,
反之“一元二次方程x2+x+m=0有实数解”必有,未必有,
因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.
故选A.
【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.
4. 【答案】B
【解析】
试题分析:设的前三项为,则由等差数列的性质,可得,所以,
解得,由题意得,解得或,因为是递增的等差数列,所以
,故选B.
第 7 页,共 16 页
考点:等差数列的性质.
5. 【答案】D
【解析】解:选项A:y=在(0,+∞)上单调递减,不正确;
选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;
选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;
选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.
故选D
6. 【答案】B
【解析】
试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,③.
7. 【答案】D
【解析】
第 8 页,共 16 页
试题分析:因为直线 平面,直线平面,所以或与异面,故选D.
考点:平面的基本性质及推论.
8. 【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
9. 【答案】B
【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,
∴三年级要抽取的学生是×200=40,
故选:B.
【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.
10.【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和.由得,∴是等差数列,公差为,首项为,∴,由得.,∴数列的前项和为,∴,选C.
11.【答案】B
【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”
可得题设为:a,b,c中恰有一个偶数
∴反设的内容是 假设a,b,c中至少有两个偶数或都是奇数.
故选B.
【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.
第 9 页,共 16 页
12.【答案】B
【解析】解:∵A={1,2,3,4},B={3,4,5,6},
∴A∩B={3,4},
∵全集I={1,2,3,4,5,6},
∴∁I(A∩B)={1,2,5,6},
故选B.
【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
二、填空题
13.【答案】 (﹣1,1] .
【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:
由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1]
14.【答案】
【解析】构造函数,则,说明在上是增函数,,即,∴,解得.∴不等式的解集为.
15.【答案】 .
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,
∴由余弦定理可得b2=a2+c2﹣2accosB,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
第 10 页,共 16 页
∴S△ABC=bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
16.【答案】 [0,2] .
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q⊊p,
∴,
解得0≤a≤2,
则实数a的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
17.【答案】
【解析】
考点:向量运算.