1 / 6
文档名称:

山东省宁阳实验中学高中数学必修1《1.2.2函数的表示》教案.doc

格式:doc   大小:144KB   页数:6页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

山东省宁阳实验中学高中数学必修1《1.2.2函数的表示》教案.doc

上传人:xinyala 2025/6/21 文件大小:144 KB

下载得到文件列表

山东省宁阳实验中学高中数学必修1《1.2.2函数的表示》教案.doc

相关文档

文档介绍

文档介绍:该【山东省宁阳实验中学高中数学必修1《1.2.2函数的表示》教案 】是由【xinyala】上传分享,文档一共【6】页,该文档可以免费在线阅读,需要了解更多关于【山东省宁阳实验中学高中数学必修1《1.2.2函数的表示》教案 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。第一单元 § 函数的表示法(2课时)
课型:新授课 日期:
第一部分:【三维目标】
学问与技能目标
力气目标
态度、情感与价值观
(1)明确函数的三种表示方法;
(2)由不同实际情境选合适方法表示函数;
(3)通过具体实例,了解简洁的分段函数及应用.
学习函数的表示形式,其目的不仅是争辩函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
让同学感受到学习函数表示的必要性,渗透数形结合思想方法。
其次部分:【自主性学习】

(1)学校学习的函数表示方法有哪些?各自有什么特点?
(2)函数图像平移规章。

(1)函数表示方法
①解析法指_________________ ?
②图像法 作函数图像有哪些方法?
③列表法
(2)分段函数
分段函数是一个函数,其图像是由几段曲线(直线段、曲线段、点等)构成。对于分段函数中的“段”,不愿定是“等长的”,这是由于每段区间的长度不一等相等。留意写分段函数定义域时区间端点应不重不漏。
(3)映射
比较函数与映射的区分与联系。
3. 我的疑难问题
第三部分:【重难点解析】
1、解析法
例1课本第19页““例1”
留意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必需注明函数的定义域;
2. 图像法
例2. 课本第21页““例5”

(1) (2)
(3) (4)


例4.(1)课本第20页“例4”。
(2)已知函数f(x),g(x)分别由下表给出.
x
1
2
3
f(x)
2
1
1
x
1
2
3
g(x)
3
2
1
则f[g(1)]的值为____________;当g[f(x)]=2时,x=__________.

例5. 课本第21页“例6”
提示:①本例具有实际背景,所以解题时应考虑其实际意义。
②分段函数的不同的表达式要用一个左大括号括起来,并分别注明各部分的自变量的取值状况.
f(x)=
(1)求 f (2)、f (-1)、的值;
(2)作出 f(x)的图像;
(3)若f (a)=3,求a的值。

在3公里以内(含3km)路程按起步价7元收费: ,请依据题意,写出收费与路程之间的函数解析式,并画出函数的图象.

“例7”;并与第23页“思考”比较,体会映射的方向挨次性。
【习题设计】
课本第23页“练习”。
(课后作业)
(1)下面可能表示函数的图象的是( )
(2)(2022·陕西)已知函数f(x)=若f(f(0))=4a,则实数a等于(  )
A. B. C.2 D.9
(3)设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是(  )
:,y=x     :xy=x
:xy=x :x→y=
(4)已知f(x)=,则f(f(f(-1)))的值是__________.
(5)函数y=的定义域 ,值域是 。
(6)作出下列各函数的图象:
(1)y=1-x,x∈Z; (2)y=|x-1| (x>0).
(7)求下列函数的定义域(用区间表示)
f(x)=; f(x)=; f(x)=-
(8)求函数y=-x+4x-1 ,x∈[-1, 3) 在值域。
(9)已知函数y=f(x)的图象是下图中的两条射线和抛物线的一部分组成,求函数的解析式.

(1)设f(x)=,则f[f()]=( )
(A) (B) (C)- (D)
(2)(2022·安徽)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是 (  )
(3)向高为H的水瓶中注水,注满为止,假如注水量V与水深h之间的函数关系如图(1)所示,那么水瓶的外形(如图(2)所示)是(  )
(4) (2022·全国Ⅰ)直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是________.
(5)设函数f(x)=使得f(x)≥1的自变量x的取值范围是__________