文档介绍:《常用逻辑用语》复习
本讲进度
《常用逻辑用语》复习
复习要求
理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;
理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;
3、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
学习指导
1、命题:
命题分类:真命题与假命题,简单命题与复合命题;
复合命题的形式:p且q,p或q,非p;
(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。
(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。其中互为逆否的两个命题同真假,即等价。因此,四种命题为真的个数只能是偶数个。
充分条件与必要条件
(1)定义:对命题“若p则q”而言,当它是真命题时,p是q的充分条件,q是p的必要条件,当它的逆命题为真时,q是p的充分条件,p是q的必要条件,两种命题均为真时,称p是q的充要条件;
(2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。从集合角度看,若记满足条件p的所有对象组成集合A,满足条件q的所有对象组成集合q,则当AB时,p是q的充分条件。BA时,p是q的充分条件。A=B时,p是q的充要条件;
当p和q互为充要时,体现了命题等价转换的思想。
反证法是中学数学的重要方法。会用反证法证明一些代数命题。
四、典型例题
例1、已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},若A是B的必要不充分条件,求实数m范围。
解题思路分析:
化简条件得A={1,2},A是B的必要不充分条件,即A∩B=BBA
根据集合中元素个数集合B分类讨论,B=φ,B={1}或{2},B={1,2}
当B=φ时,△=m2-8<0
∴
当B={1}或{2}时,,m无解
当B={1,2}时,
∴ m=3
综上所述,m=3或
说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。
例2、用反证法证明:已知x、y∈R,x+y≥2,求证x、y中至少有一个大于1。
解题思路分析:
假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y≥2矛盾
∴假设不成立
∴ x、y中至少有一个大于1
说明;反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。
例3、若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件。
解题思路分析:
利用“”、“”符号分析各命题之间的关系
DCBA
∴ DA,D是A的充分不必要条件
说明:符号“”、“”具有传递性,不过前者是单方向的,后者是双方向的。
例5、求直线l:ax-y+b=0经过两直线l1: