1 / 2
文档名称:

实变函数论教学大纲.doc

格式:doc   大小:23KB   页数:2页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

实变函数论教学大纲.doc

上传人:zbfc1172 2018/5/12 文件大小:23 KB

下载得到文件列表

实变函数论教学大纲.doc

相关文档

文档介绍

文档介绍:实变函数论教学大纲
学分数 4 周学时 4
一、说明
1、课程名称:实变函数论(一学期课程)
学时:4×18
2、教学目的和要求
(1)课程性质:本课程是数学系基础课,为数学系本科学生所必修。
(2)基本内容:本课程主要是以n维Euclid空间及其上实值函数为背景,运用点集分析的方法建立测度与积分的理论,具体内容包括:集合、映射,Rn中点集的拓朴,可测集和可测函数,积分理论,微分和不定积分。
(3)基本要求:通过本课程的学习,学生应熟练掌握关于可测集、可测函数的概念和性质,深刻理解并掌握Lebesgue积分的理论,并在学习过程中形成抽象思维能力和逻辑推理能力的一个飞跃。
3、教学方式:课堂讲授+习题课训练
4、考试方式:闭卷笔试
5、教材:《实变函数论》,曹广福编,高等教育出版社,2000年
参考书:《实变函数论》,周民强,北京大学出版社。
二、讲授纲要(其中学时数不包括习题课时间)
第一章集合和Rn中的点集(12学时)
§1 集和集的运算(2学时)
§2 映射和势(6学时)
§3 Rn中的点集(4学时)
本章教学要求
熟练掌握集合的代数运算和极限运算,能应用Bernstein定理确定一些集合势,熟悉Rn的点集拓扑中关于开集、闭集、稠密与疏朗等基本概念。
第二章测度(1 8学时)
§1 外测度与可测集(6学时)
§2 测度及其性质(6学时)
§3 可测集类(6学时)
本章教学要求:
掌握外测度的概念,正确理解Caratheudory条件,熟练掌握测度及其性质,熟悉一些重要的可测集类,理解不可测集的典型例子。
第三章可测函数(14学时)
§1 可测函数及其基本性质(6学时)
§2 可测函数列的收敛(6学时)
§3 Lebesgue可测函数的结构(2学时)
本章教学要求:
熟练掌握可测函数的概念及其基本性质