1 / 37
文档名称:

Chapter 3 Convolution Representation.ppt

格式:ppt   页数:37
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

Chapter 3 Convolution Representation.ppt

上传人:中国课件站 2011/8/30 文件大小:0 KB

下载得到文件列表

Chapter 3 Convolution Representation.ppt

文档介绍

文档介绍:§3-1 Convolution Representation of Linear Time-invariant Discrete-Time Systems
Chapter 3 Convolution Representation
§3-2 Convolution of Discrete-Time Signals
Problems
1
§3-1 Convolution Representation of Linear Time-invariant Discrete-Time Systems
Consider a single-input single-output discrete-time system with input x[n] and output y[n]. Throughout this section it is assumed that y[n] is the output response resulting from x[n] with no initial energy in the system prior to the application of x[n]. It is also assumed that the system under consideration is causal, linear, and time-invariant, but the system is not necessarily finite dimensional.
Chapter 3 Convolution Representation
2
Unit-Pulse Response
Let h[n] denote the output response of the system when the input x[n] is equal to the unit pulse δ[n] with no initial energy in the system at time n=0. (Recall that δ[0]=1 and δ[n]=0 for all n0.) The response h[n] is called the unit-pulse response of the system. Note that since δ[n]=0 for n=1, 2, …, by causality the unit-pulse response must be zero for all integers n<0 (since in a causal system there can be no response before an input is applied). An example of the form of the unit-pulse response is illustrated in Fig. 3-1.
Fig. 3-1
3
Example
Consider the finite-dimensional discrete-time system given by the input/output difference equation
y[n] +ay[n1]  bx[n2] ()
where a and b are constants. The unit-pulse response for this system can puted by solving Eq.() with initial condition y[1]=0 and with input x[n]=δ[n]. From the discussion in Section , the solution to Eq.() can be expressed in the form
()
But sinceδ[n]=0 for all n0 and δ[0]=1, Eq. () reduces to
y[n] =(–a)n b , n =1, 2, …()
4
Hence the unit-pulse response h[n] for this system is given by
Returning to the general case, consider a causal linear time-invariant discrete-time system with input x[n], ouput y[n], and unit-pulse response h[n]. Since the system is time in

最近更新

2026年四川职业技术学院单招职业适应性测试题.. 41页

2025年湖南省湘西土家族苗族自治州单招职业适.. 42页

2025年湖南艺术职业学院单招职业适应性测试模.. 40页

2025年湖南铁道职业技术学院单招职业技能测试.. 42页

2025年湘中幼儿师范高等专科学校单招职业技能.. 41页

2025年滁州职业技术学院单招职业技能测试模拟.. 39页

2025年漳州城市职业学院单招职业倾向性测试模.. 40页

2026年安徽工业职业技术学院单招职测备考题库.. 41页

2025年甘肃卫生职业学院单招职业技能测试题库.. 40页

2026年安徽马钢技师学院单招职业适应性考试题.. 42页

2026年宝鸡职业技术学院单招综合素质考试模拟.. 44页

2025年白城职业技术学院单招职业倾向性考试模.. 41页

2026年山东信息职业技术学院单招职测考试题库.. 43页

2025年眉山职业技术学院单招职业技能测试模拟.. 38页

2025年福州职业技术学院单招职业适应性考试模.. 40页

2025年福建林业职业技术学院单招职业倾向性测.. 40页

2026年山西老区职业技术学院单招职业适应性考.. 42页

2025年科尔沁艺术职业学院单招职业倾向性测试.. 39页

2025年绍兴文理学院单招职业适应性测试题库附.. 40页

2026年广西体育高等专科学校单招综合素质考试.. 41页

2026年广西培贤国际职业学院单招综合素质考试.. 42页

2025年西南财经大学天府学院单招职业倾向性测.. 40页

2026年广西省河池市单招职业适应性考试题库必.. 43页

2025年西安科技大学高新学院单招综合素质考试.. 40页

2025年西昌民族幼儿师范高等专科学校单招职业.. 39页

2025年许昌陶瓷职业学院单招职业技能考试模拟.. 39页

2026年成都工业职业技术学院单招职业倾向性测.. 42页

2025年贵州护理职业技术学院单招职业适应性考.. 40页

【人教版英语字帖】七年级下册单词表衡水体字.. 42页

国开《建筑力学》期末机考答案 15页