1 / 12
文档名称:

精液的处理.ppt

格式:ppt   大小:691KB   页数:12页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

精液的处理.ppt

上传人:drp539603 2018/6/16 文件大小:691 KB

下载得到文件列表

精液的处理.ppt

相关文档

文档介绍

文档介绍:主要内容
卷积神经网络
Stacked Hourglass算法
Conditional Random Field
卷积神经网络
N)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC
(1)卷积层:用它来进行特征提取,如下:
输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图;
卷积神经网络
输入图像和filter的对应位置元素相乘再求和,最后再加上b,得到特征图。如图中所示,filter w0的第一层深度和输入图像的蓝色方框中对应元素相乘再求和得到0,其他两个深度得到2,0,则有0+2+0+1=3即图中右边特征图的第一个元素3.,卷积过后输入图像的蓝色方框再滑动,stride=2,如下:
卷积神经网络
如上图,完成卷积,得到一个3*3*1的特征图;在这里还要注意一点,即zero pad项,即为图像加上一个边界,边界元素均为0.(对原输入无影响)一般有
F=3 => zero pad with 1
F=5 => zero pad with 2
F=7=> zero pad with 3,边界宽度是一个经验值,加上zero pad这一项是为了使输入图像和卷积后的特征图具有相同的维度,如:
输入为5*5*3,filter为3*3*3,在zero pad 为1,则加上zero pad后的输入图像为7*7*3,则卷积后的特征图大小为5*5*1((7-3)/1+1),与输入图像一样;
而关于特征图的大小计算方法具体如下:
卷积神经网络
卷积层还有一个特性就是“权值共享”原则。如下图:
如没有这个原则,则特征图由10个32*32*1的特征图组成,即每个特征图上有1024个神经元,每个神经元对应输入图像上一块5*5*3的区域,即一个神经元和输入图像的这块区域有75个连接,即75个权值参数,则共有75*1024*10=768000个权值参数,这是非常复杂的,因此卷积神经网络引入“权值”共享原则,即一个特征图上每个神经元对应的75个权值参数被每个神经元共享,这样则只需75*10=750个权值参数,而每个特征图的阈值也共享,即需要10个阈值,则总共需要750+10=760个参数。
卷积神经网络
激活层:把“激活的神经元特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键。
激活函数是用来加入非线性因素的,因为线性模型的表达力不够。对于图像,我们主要采用了卷积的方式来处理,也就是对每个像素点赋予一个权值,这个操作显然就是线性的。但是对于我们样本来说,不一定是线性可分的,为了解决这个问题,我们可以进行线性变化,或者我们引入非线性因素,解决线性模型所不能解决的问题。
Relu函数可构建稀疏矩阵,具有稀疏性,这个特性可以去除数据中的冗余,最大可能保留数据的特征,也就是大多数为0的稀疏矩阵来表示。它就是取的max(0,x),因为神经网络是不断反复计算,实际上变成了它在尝试不断试探如何用一个大多数为0的矩阵来尝试表达数据特征,所以目前大部分的卷积神经网络中,基本上都是采用了ReLU 函数。
卷积神经网络
池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征,如下:
卷积神经网络
池化操作一般有两种,一种是Avy Pooling,一种是max Pooling,如下:
同样地采用一个2*2的filter,max pooling是在每一个区域中寻找最大值,这里的stride=2,最终在原特征图中提取主要特征得到右图。
(Avy pooling现在不怎么用了,方法是对每一个2*2的区域元素求和,再除以4,得到主要特征),而一般的filter取2*2,最大取3*3,stride取2,压缩为原来的1/4.
注意:这里的pooling操作是特征图缩小,有可能影响网络的准确度,因此可以通过增加特征图的深度来弥补。
卷积神经网络
全连接层:连接所有的特征,将输出值送给分类器(如softmax分类器)。
总的一个结构大致如下:
N网络中前几层的卷积层参数量占比小,计算量占比大;而后面的全连接层正好相反,N网络都具有这个特点。因此我们在进行计算加速优化时,重点放在卷积层;进行参数优化、权值裁剪时,重点放在全连接层。
卷积神经网络
关于卷积的过程图解如下:
使用全卷积网络解决人体姿态分析问题,截至2016年5月,在MPII姿态分析竞赛中暂列榜首,PCKh(误差小于一