文档介绍:摘要在信息化的社会里,图像在信息传播中所起的作用越来越大。所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出:均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的;中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;维纳滤波对高斯噪声有明显的抑制作用;对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。关键词:邻域平均法;中值滤波;维纳滤波;小波变换AbstractIntheinformationsociety,,,medianfilteringmethod,(includinggaussiannoiseorsalt&peppernoise),andgettingsomeconclusionsfromthesimulationdenoisinganalysis:averagefilteringistypicaloflinearfilter,,especiallyeffectivetosalt&,:Averageneighborhood;Medianfilter;Wienerfiltering;Wavelettransform目录第1章概述 2第2章Matlab简介 8第3章图像去噪算法 26第4章基于Matlab的图像去噪算法仿真 36结论 37参考文献 38致谢 39概述课题研究背景21世纪,人类已经进入了信息化时代,计算机在处理各种信息中发挥着重要作用。据统计,人类从自然界获取的信息中,视觉信息占75%~85%。俗话说“百闻不如一见”,有些场景或事物,不管花费多少笔墨都难以表达清楚,然而,若用一幅图像描述,可以做到一目了然。可见,在当代高度信息化的社会中,图形和图像在信息传播中所起的作用越来越大,在图像处理领域,数字图像处理得到了飞速发展。图像是信息社会人们获取信息的重要来源之一。在通过图像传感器将现实世界中的有用图像信号进行采集、量化、编码、传输、恢复的过程中,存在大量影响图像质量的因素。因此图像在进行使用之前,一般都要经过严格的预处理如去噪、量化、压缩编码等。噪声的污染