文档介绍:仪器分析中的计算机方法
---回归分析的原理及应用
在分析化学,特别是仪器分析中,常常需要做工作曲线(也叫标准曲线,或校正曲线,或检量线)。例如,原子吸收法中作吸光度和浓度的工作曲线,极谱法中作波高和浓度的工作曲线等等。在分析化学中所使用的工作曲线,通常都是直线。一般是把实验点描在坐标纸上,横坐标X表示被测物质的浓度,叫自变量。大都是把可以精确测量或严格控制的变量(如标准溶液的浓度)作为自变量;纵坐标y表示某种特征性质(如吸光度、波高等)的量,称因变量,一般设因变量是一组相互独立、其误差服从同一正态分布N(Ο,σ2)的随机变量。然后根据坐标纸上的这些散点(实验点)的走向,用直尺描出一条直线。这就是分析工作者习惯的制作工作曲线的方法。
若吸光度----浓度的直线能通过所有实验点,在统计上就说溶液的吸光度和浓度有最密切的线性关系。吸光度完全依赖于浓度的改变而变,完全遵循比尔定律。实验条件中的各种偶然因素对它无任何影响(亦即没有实验误差)。我们称这种关系为确定性关系或函数关系。这时做工作曲线图的任务比较简单,借助于一支直尺和一支铅笔,就能完成。但是由于实验中不可避免的有误差存在,实验点全部密集在回归线上的情况通常是极少见的,尤其当误差较大时,实验点比较分散,并不在一条线上,这时作图就有困难了。因为凭直觉很难判断怎样才能使所联的线对干所有实验点来说是误差最小的,亦即难于确定到底哪条线才是最好的回归线。
例如,用火焰原子吸收法测定镁,得到下表数据
Mg(ppm)
A
图中的工作曲线是用Excel的方法回归得到,选取的数据点不同,R就不一样。
最小二乘法原理
若用(χi,i )表示n个数据点(i=1,2,3,...,n),而任意一条直线方程可写成:
(1)
在(1)式中,采用y*符号,表示这是一条任意的直线,如果用这条直线来代表x和y的关系,即对每个已知的数据点(xi,yi)来说,其误差为
(2)
令各数据点误差的平方的加和(差方和)为Q,则Q是总的误差:
(3)
回归直线就是在所有直线中,,回归直线的系数b及常数项a,应使Q达到极小值.
根据微积分求值的原理,要使Q达到极小值,只需将(3)式分别对a,b求偏微商,,b满足
(4)
(5)
从(4)式可得到
(6)
分别代表xi和yi的平均值。从式(5)可得到
将(6)式代入,得
所以
根据差方和关系式,若令
同理,
可推出:
由观测值(一组样本)算出a,b的值,称为参数a,b的估算值,用符号,表示,于是回归直线方程式便可确定如下:
式中分别表示由样本求得的y,a,b的估算值。如果
,则有,
这种方法就称为最小二乘法,即也就是“最小差方和法”。
回归方程的类型
这里的“线性”,是对a,b而言,对y