文档介绍::
    ,会用加减法解二元一次方程组;
    ,解三元一次方程组的基本思想和解法。: ,会用加减法解二元一次方程组; ,解三元一次方程组的基本思想和解法。:
    :
 。
。: ,会用加减法解二元一次方程组; ,解三元一次方程组的基本思想和解法。:
    :
,领会多元方程组向一元方程组转化(化归)的思想。
,渗透换元的思想。
,进一步领会方程的思想。: ,会用加减法解二元一次方程组; ,解三元一次方程组的基本思想和解法。:
    :
,加减消元法解二元一次方程组及简单的三元一次方程组的训练及选用合理、简捷的方法解方程组,培养运算能力。
,明确二元一次方程组及三元一次方程组解法的主要思路是"消元",从而促成未知向已知的转化,培养观察能力和发展逻辑思维能力。
,培养运用转化思想去解决问题,发展思维能力。: ,会用加减法解二元一次方程组; ,解三元一次方程组的基本思想和解法。:
    :
,是解二元一次方程组的基本方法之一。
:
(1)先选择好准备消去哪一个未知数,一般在两个未知数中选择在两个方程中系数较为简单的一个。
(2)如果准备消去的未知数在两个方程中的系数的绝对值相等,就直接用加减法消去这个未知数,如果系数的绝对值不相等就找出这个未知数在两个方程里系数的最小公倍数,然后把一个方程或两个方程的两边乘以适当的数,使被消去的未知数系数的绝对值相等。
(3)把所得的两个方程的两边分别相加或相减,消去这个未知数,得出另一个未知数的一元一次方程。
(4)解这个一元一次方程,求得一个未知数的值。
(5)用这个未知数的值代入方程组的任何一个方程,求出另一个未知数的值。
(6)把所求的两个未知数的值写在一起,就是方程组的解,方程组的解一般写成形式。
:
(1)解三元一次方程组的基本思路是化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解。
(2)解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1次,并且(1),(2),(3)3个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止第一次消去y,第二次消去z或x,仍然得到三元一次方程组,没有达到消“元”的目的。例如:
解方程组
解:(1)-(2), 得 4y-z=1......(4)
(3)-(1),得x+y=3.....(5)
解联立(