文档介绍:1 氨氮的环境危害
氨氮的性质
氨氮以游离氨或铵盐的形式存在于水中,两者的组成比取决于水的PH 值和水温。当PH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。
氨氮的来源
(1)城市生活污水
水中氨氮的来源主要为生活污水中含氮有机物在微生物作用下的分解产物。还有农作物生长过程中以及氮肥的使用也会产生氨氮,并随着污水排入城市的污水处理厂或直接排入水体中。
(2)氨和亚硝酸盐可以互相转化
水中的氨在氧的作用下可以生成亚硝酸盐,并进一步形成硝酸盐。同时水中的亚硝酸盐也可以在厌氧条件下受微生物作用转化为氨。
(3)某些工业废水,如焦化废水和合成氨化肥厂废水等。
化肥厂、发电厂、水泥厂等化工厂向环境中排放含氨的气体、粉尘和烟雾;随着人民生活水平的不断提高,私家车也越来越多,大量的自用轿车和各种型号的货车等交通工具也向环境空气排放一定量含氨的汽车尾气。这些气体中的氨溶于水中,形成氨氮,污染了水体。
对人体健康的影响
水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。
对生态环境的影响
氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH 值及水温有密切关系,一般情况,pH 值及水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。
氨氮对水生物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢,组织损伤,降低氧在组织间的输送。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。急性氨氮中毒危害为:水生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。
氨氮对水体造成了污染,使鱼类死亡,或形成亚硝酸盐危害人类的健康。所以氨氮是评价水体污染和“自净”状况的重要指标。
3 污染物分析方法的最新进展
本方法作为化学常规分析方法已经应用了20 年,方法具有操作简单、灵敏等特点,一直被实验室广泛采用。该标准方法是比较成熟和完善的测定方法,适合监测系统使用。
在国外发达国家,流动注射技术已应用很久,有美国、日本、荷兰、德国等国家的多个仪器公司在研制和生产流动注射分析仪。主要包括间隔流动注射和连续流动注射两大类。国内现在逐步开始推广使用此技术。它具有缩短分析时间,分析速度快,准确度、精密度高,重现性好,检出限低,检测浓度范围大,自动进样,自动稀释,操作简单,样品和试剂消耗量小等特点,并且样品全封闭蒸馏、
吸收和检测,减少了对环境的污染和对人体的危害,尤其在检测大批量的样品上有显著优势,是现今水质检测中比较先进的检测手段。氨氮的流动注射法是基于氨氮的分光光度法而形成的,它的原理与分光光度法基本相同,并有将手工分析的过程转变为自动化分析的特点。
国内现在逐步开始推广使用此技术。实验室在实际工作中更多的使用了仪器自动分析样品,大大减轻了工作量,同时节省了试剂并减少了对环境的污染,使我和国际接轨。
4 现有方法的局限性
原GB 7479-87 自发布以来,在环境水质监测、污染源调查、污染源排放监督管理方面发挥了重要的作用,一直被全国的环境监测部门广泛使用。但是由于该方法使用的纳氏试剂中含有对人体健康有害的有毒物质碘化汞或氯化汞,近年来已有逐渐为其他方法取代的趋势。
测试方法:纳氏试剂分光光度法
本标准适用于地表水、地下水、生活污水和工业废水中氨氮的测定。
当水样体积为50ml,使用20mm比色皿时,,,(均以N计)。
以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420nm处测量吸光度.
水样中含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时会产生干扰,含有此类物质时要作适当处理,以消除对测定的影响。
若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除,用淀粉-碘化钾试纸检验余氯是否除尽。
在显色时加入适量的酒石酸钾钠溶液,可消除钙镁等金属离子的干扰。若水样浑浊或有颜色时可用预蒸馏法或絮凝沉淀法处理。